Ordering Information .................................................................................................................................................................... 2
User Programming Interface ..................................................................................................................................... 18
Start-up output frequency and signaling types ........................................................................................................... 18
Any-frequency function ............................................................................................................................................. 19
C/SPI Control Registers...................................................................................................................................................... 28
9 I
Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 28
Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 29
Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 29
Register Address: 0x03. Frac-N PLL Feedback Divider Integer Value and Frac-N PLL Feedback Divider Fraction
Value MSW ............................................................................................................................................................... 30
Register Address: 0x05. Forward Divider, Driver Control ......................................................................................... 30
Register Address: 0x06. Driver Divider, Driver Control ............................................................................................. 31
2
C Operation ........................................................................................................................................................................ 32
10 I
I
2
C protocol ............................................................................................................................................................... 32
I
2
C Timing Specification ............................................................................................................................................ 35
I
2
C Device Address Modes ....................................................................................................................................... 36
Dimensions and Patterns ........................................................................................................................................................... 43
Additional Information ................................................................................................................................................................ 44
Revision History ......................................................................................................................................................................... 45
Rev 1.01
Page 3 of 45
www.sitime.com
SiT3521
1 to 340 MHz Elite Platform I2C/SPI Programmable Oscillator
1 Electrical Characteristics
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Symbol
f
Min.
1
Typ.
–
–
–
–
–
±1
–
–
–
Max.
340
Unit
MHz
Condition
Factory or user programmable, accurate to 6 decimal places
Frequency Range
Frequency Stability
Frequency Stability
F_stab
-10
-20
-25
-50
First Year Aging
F_1y
–
+10
+20
+25
+50
–
ppm
ppm
ppm
ppm
ppm
°C
°C
°C
1
st
-year aging at 25°C
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations.
Temperature Range
Operating Temperature Range
T_use
-20
-40
-40
+70
+85
+105
Supply Voltage
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
3.3
3.0
2.8
2.5
–
–
100
–
–
–
3.63
3.3
3.08
2.75
–
30%
–
V
V
V
V
Extended Commercial
Industrial
Extended Industrial. Available only for I
2
C operation, not SPI.
Input Characteristics – OE Pin
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
VIH
VIL
Z_in
70%
–
–
Vdd
Vdd
kΩ
OE pin
OE pin
OE pin, logic high or logic low
Output Characteristics
Duty Cycle
DC
45
–
–
55
%
Startup and Output Enable/Disable Timing
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
T_start
T_oe_hw
3.0
3.8
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
T_oe_sw
–
–
6.5
µs
Rev 1.01
Page 4 of 45
www.sitime.com
SiT3521
1 to 340 MHz Elite Platform I2C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.15
–
89
58
–
32
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3 V or 2.5 V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B.
T_jitt
–
0.225
0.1
0.225
0.11
1
0.340
0.14
0.340
0.15
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
80
61
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3 V or 2.5 V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
400
455
50
1.375
50
470
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.1
0.21
0.1
1
0.275
0.12
0.367
0.12
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V
mV
mV
V
mV
ps
f = 156.25MHz See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
[size=4]1. Choose the appropriate compilation options (introduction) [/size] [size=4]-o0/1/2/3: The most important optimization options; if -o3 is selected, the compiler will try all possible optimiza...
There are many types of bridge rectifiers: flat, round, square, bench (in-line and SMD), etc., with GPP and O/J structures. The rectifier current ranges from 0.5A to 100A, and the reverse peak voltage...
1 Introduction
RFID is the abbreviation of Radio Frequency Identification, also known as electronic tag, which is a technology that uses radio frequency signals to achieve contactless information tr...
This is the north, a small county town, a city that looks like a chessboard. In my memory, every year is so rich, and every year there are different dishes. Even if I leave my hometown, I always have ...
Dear all,when the wheel drum motor is idling, the controller starts the motor. Since the program needs to perform the charge pump action first, that is, the lower arm is short-circuited (10ms), this w...
In our embedded WeChat group, a friend talked about the recent chip price increase that everyone is concerned about, saying that it is a monopoly of giants and they have the final say on the price. At...
On June 6, the 3rd China Light Industry Entrepreneurs Summit Forum and the Light Industry Top 100 Enterprises Awards Ceremony, themed on new economy, new model and new perspective, came to a close ...[Details]
System designers are more concerned about power consumption now than ever before, due to tighter power constraints, specifications, and standards. For next generation designs, power budgets are usu...[Details]
At present, under the trend of intelligentization, networking and sharing in the automotive industry, the development of the intelligent connected vehicle industry has attracted wide attention from b...[Details]
This Marx generator has a total of six stages, each of which is composed of a 0.002uF 20kV capacitor and two 1m ohm resistors. On the left is a neon transformer (9kV 30mA). The high-voltage AC genera...[Details]
Recently, according to foreign media reports, the improved Samsung Galaxy Fold foldable screen mobile phone was exposed to screen problems again. Previously, after Samsung sent out the first review s...[Details]
Heinz Hössli now Chief Financial Officer of the Bühler Group in Uzwil, Switzerland , Vice President of Advanced Materials. He will take on the role of Group Chief Financial Officer in the first half...[Details]
Lithium-ion battery technology has always been an area that researchers around the world want to break through, but due to physical and chemical limitations, no relevant materials have yet been found...[Details]
In June this year, Xinhuazhang Technology successfully released the "EDA 2.0 White Paper", which was the first to point out the key development path for the next generation of EDA. It proposed to rel...[Details]
Abstract: A high-precision self-excited multi-channel output regulated switching power supply is proposed. Compared with the previous multi-channel output switching power supply, it uses very few comp...[Details]
How to choose LED display packaging devices? It is generally believed that the following five key performance indicators of the display are closely related to the LED quality parameters: brightness...[Details]
The 2GWh annual vanadium liquid flow energy storage system manufacturing project was filed on the Hunan Provincial Investment Project Online Approval and Supervision Platform on December 7, 2023, w...[Details]
The ATmega32 has an on-chip bandgap reference for brownout detection or as an input to an analog comparator or ADC. The 2.56V reference voltage for the ADC is generated from this on-chip bandgap refe...[Details]
At the Hangzhou Yunqi Conference on September 25, 2019, Zhang Jianfeng, president of the DAMO Academy, demonstrated the world's most powerful AI chip, the Hanguang 800. Image source: The Paper Jiwei...[Details]
introduction
With the continuous progress and development of science and technology, people have also put forward higher requirements for the quality of life. As a new body, home network is entering...[Details]
Electronic fence is the most advanced, best-performing, safest and most secure perimeter security product in the world. Electronic fence originated in Australia. Since its introduction, it has bee...[Details]