Ordering Information .................................................................................................................................................................... 2
7.1. User Programming Interface ..................................................................................................................................... 19
7.2. Start-up output frequency and signaling types .......................................................................................................... 19
8.1. Any-frequency function ............................................................................................................................................. 20
C/SPI Control Registers...................................................................................................................................................... 30
9.1. Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 30
9.2. Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 31
9.3. Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 32
9.4. Register Address: 0x03. Frac-N PLL Integer Value and Frac-N PLL Fraction MSW ................................................ 33
9.6. Register Address: 0x05. PostDiv, Driver Control ...................................................................................................... 34
9.7. Register Address: 0x06. mDriver, Driver Control ...................................................................................................... 35
10 I
2
C Operation ........................................................................................................................................................................ 36
10.1. I
2
C protocol ............................................................................................................................................................... 36
10.2. I
2
C Timing Specification ............................................................................................................................................ 39
10.3. I
2
C Device Address Modes ....................................................................................................................................... 40
Dimensions and Patterns ........................................................................................................................................................... 47
Additional Information ................................................................................................................................................................ 48
Revision History ......................................................................................................................................................................... 49
Rev 1.00
Page 3 of 49
www.sitime.com
SiT3542
340 to 725 MHz Endura™ Series I
2
C/SPI Programmable Oscillator
1 Electrical Characteristics
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Symbol
f
Min.
340.000001
340.000001
Typ.
–
–
Max.
725.000000
500.000000
Unit
MHz
MHz
Condition
LVDS and LVPECL output driver, factory or user
programmable, accurate to 6 decimal places
HCSL output driver, factory or user programmable, accurate to
6 decimal places
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations
Frequency Range
Frequency Stability
Frequency Stability
F_stab
-20
-20
-25
-50
First Year Aging
F_1y
–
–
–
–
–
±1
–
–
–
+20
+20
+25
+50
–
ppm
ppm
ppm
ppm
ppm
1
st
-year aging at 25°C
Temperature Range
Operating Temperature Range
T_use
-20
-40
-40
+70
+85
+105
°C
°C
°C
Extended Commercial
Industrial
Extended Industrial. Available only for I
2
C operation, not SPI.
Rugged Characteristics
Acceleration (g) sensitivity,
Gamma Vector
Supply Voltage
F_g
–
–
0.1
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
3.3
3.0
2.8
2.5
–
–
100
–
–
–
3.63
3.3
3.08
2.75
–
30%
–
V
V
V
V
ppb/g
Low sensitivity grade; total gamma over 3 axes; 15 Hz to
2 kHz; MIL-PRF-55310, computed per section 4.8.18.3.1
Input Characteristics – OE Pin
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
VIH
VIL
Z_in
70%
–
–
Vdd
Vdd
kΩ
OE pin
OE pin
OE pin, logic high or logic low
Output Characteristics
Duty Cycle
DC
45
–
–
55
%
Startup and Output Enable/Disable Timing
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
T_start
T_oe_hw
3.0
9.1
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
T_oe_sw
–
–
11.8
µs
Rev 1.00
Page 4 of 49
www.sitime.com
SiT3542
340 to 725 MHz Endura™ Series I
2
C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.10
–
94
63
–
30
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B
T_jitt
–
0.22
0.075
0.23
0.09
1
0.260
0.085
0.325
0.095
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
89
67
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
340
530
50
1.375
50
460
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.060
0.21
0.070
1
0.255
0.070
0.320
0.80
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
mV
mV
V
mV
ps
f = 622.08 MHz. See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
DTU (Data Transfer Unit) is a wireless terminal device specially used to convert serial port data into IP data or convert IP data into serial port data for transmission through wireless communication ...
CadenceLIVE China 2022 China Online User Conference invites you to attendRegister for the conferenceSummer is coming, everything grows, the sun is bright and bright. In this midsummer season, CadenceL...
introduceReceivers typically contain narrow bandpass hardware filters and narrow low-pass filters implemented in digital signal processing (DSP). The equivalent noise bandwidth (ENBW) is a way to unde...
As shown in the figure, after the half-bridge inverter output passes through c5 and L1, it passes through two voltage-dividing resistors to form two detection signals s1 and s2. When laying out the PC...
I used to use 51 single-chip microcomputer and Keil C51 uVision V4.02; recently I started working on STM32 and installed keilMDK uVision V4.23.
Originally I installed keilC51 first and then kei...[Details]
introduction
For a long time, my country's medical system has used float oxygen flowmeters to monitor the flow rate of oxygen inhaled by patients when they breathe oxygen. This flow rate is onl...[Details]
When we design MP3 or other dynamic displays, we need to process smooth movement, such as moving left or right! Generally, there are hardware methods and software simulation methods. The hardware meth...[Details]
South Korean technology giant LG Electronics said today that in order to better cope with fierce global competition, it will transfer two of the six TV production lines at its Gumi plant in South Kor...[Details]
1. Introduction Coriolis mass flow meter (hereinafter referred to as CMF) is a direct mass flow meter made by using the principle of Coriolis force that is proportional to the mass flow rate when the...[Details]
At the GTC conference in the fall of 2022, NVIDIA released the next-generation in-vehicle computing platform "DRIVE Thor", which can provide up to 2000 trillion floating-point operation...[Details]
GoodWe grandly launches the MT series three-phase four-way string photovoltaic inverter, with power including 50kW/60kW/65kW/75kW, which is very suitable for distributed power stations and ground p...[Details]
Each GPIO port has two 32-bit configuration registers (GPIOx_CRL, GPIOx_CRH) to control the high and low eight bits of each port respectively. If the IO port is 0-7, write the CRL register, if the IO ...[Details]
I have been working on an STC download interface these days. I thought the circuit was simple and I thought it would be easy to make. But I spent a lot of effort to draw the PCB diagram, and I needed ...[Details]
Shanghai, China, September 9, 2021 - ViewSonic announced the launch of a new gaming monitor, VX2716-2KC-PRO. The VX2716-2KC-PRO breaks through new perspectives. It has a 27-inch curved screen with mi...[Details]
Let's take a look at the program image first. Typically, the program image of the Cortex-M0 processor starts at address 0x00000000. The program image starts with a vector table, which conta...[Details]
Recently, the Ministry of Finance, the Ministry of Industry and Information Technology, and the Ministry of Transport issued a notice on carrying out a pilot project to fill the gaps in county-leve...[Details]
The MAX24003 is a complete burst-mode laser driver, transmitter, and limiting amplifier receiver for use within fiber-optic modules for FTTx applications. A fully compliant GEPON module with digital ...[Details]
In 2024, the growth of the AR industry is significantly faster than that of VR devices, and shipments have also increased. The differences between the AR and VR industries reflect that consumers' p...[Details]