100% pin-to-pin drop-in replacement to quartz-based XO
Excellent total frequency stability as low as ±20 ppm
Operating temperature from -40°C to 85°C. For 125°C and/or
-55°C options, refer to
SiT8919
and
SiT8921
Low power consumption of 4.9 mA typical at 1.8V
Standby mode for longer battery life
Fast startup time of 5 ms
LVCMOS/HCMOS compatible output
Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5,
5.0 x 3.2, 7.0 x 5.0 mm x mm
Instant samples with
Time Machine II
and
field programmable
oscillators
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
For AEC-Q100 oscillators, refer to
SiT8924
and
SiT8925
◼
Ideal for GPON/EPON, network switches, routers.
servers, embedded systems
Ideal for Ethernet, PCI-E, DDR, etc.
Electrical Characteristics
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise
stated. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics
Parameters
Output Frequency Range
Frequency Stability
Symbol
f
F_stab
Min.
115
-20
-25
-50
Operating Temperature Range
T_use
-20
-40
Supply Voltage
Vdd
1.62
2.25
2.52
2.7
2.97
2.25
Current Consumption
Idd
–
–
–
OE Disable Current
Standby Current
I_OD
I_std
–
–
–
–
–
Duty Cycle
Rise/Fall Time
DC
Tr, Tf
45
–
–
–
Output High Voltage
Output Low Voltage
VOH
VOL
90%
–
Typ.
–
–
–
–
–
–
1.8
2.5
2.8
3.0
3.3
–
6.2
5.5
4.9
–
–
2.6
1.4
0.6
–
1
1.3
0.8
–
–
Max.
137
+20
+25
+50
+70
+85
1.98
2.75
3.08
3.3
3.63
3.63
7.5
6.4
5.6
4.2
4.0
4.3
2.5
1.3
55
2
2.5
2
–
10%
Unit
MHz
ppm
ppm
ppm
°C
°C
V
V
V
V
V
V
mA
mA
mA
mA
mA
A
A
A
%
ns
ns
ns
Vdd
Vdd
No load condition, f = 125 MHz, Vdd = 2.8 V, 3.0 V, 3.3 V or
2.25 to 3.63 V
No load condition, f = 125 MHz, Vdd = 2.5 V
No load condition, f = 125 MHz, Vdd = 1.8 V
Vdd = 2.5 V to 3.3 V, OE = GND, Output in high-Z state
Vdd = 1.8 V, OE = GND, Output in high-Z state
ST = GND, Vdd = 2.8 V to 3.3 V, Output is weakly pulled down
ST = GND, Vdd = 2.5 V, Output is weakly pulled down
ST = GND, Vdd = 1.8 V, Output is weakly pulled down
All Vdds
Vdd = 2.5 V, 2.8 V, 3.0 V or 3.3 V, 20% - 80%
Vdd =1.8 V, 20% - 80%
Vdd = 2.25 V - 3.63 V, 20% - 80%
IOH = -4 mA (Vdd = 3.0 V or 3.3 V)
IOL = 4 mA (Vdd = 3.0 V or 3.3 V)
Inclusive of Initial tolerance at 25°C, 1
st
year aging at 25°C,
and variations over operating temperature, rated power
supply voltage and load.
Condition
Frequency Range
Frequency Stability and Aging
Operating Temperature Range
Extended Commercial
Industrial
Contact SiTime
for 1.5 V support
Supply Voltage and Current Consumption
LVCMOS Output Characteristics
Rev 1.06
15 March 2021
www.sitime.com
SiT8009B
High Frequency, Low Power Oscillator
Table 1. Electrical Characteristics (continued)
Parameters
Symbol
Min.
Typ.
–
–
87
Max.
–
30%
150
Unit
Condition
Input Characteristics
Input High Voltage
Input Low Voltage
Input Pull-up Impedance
VIH
VIL
Z_in
70%
–
50
2
Startup Time
Enable/Disable Time
Resume Time
RMS Period Jitter
T_start
T_oe
T_resume
T_jitt
–
–
–
–
–
Peak-to-peak Period Jitter
T_pk
–
–
RMS Phase Jitter (random)
T_phj
–
–
Vdd
Vdd
k
Pin 1, OE or ST
Pin 1, OE or ST
Pin 1, OE logic high or logic low, or ST logic high
–
–
Pin 1, ST logic low
M
Startup and Resume Timing
–
–
–
5
122
5
Jitter
1.9
1.8
12
14
0.5
1.3
3
4
25
30
0.9
2
ps
ps
ps
ps
ps
ps
f = 125 MHz, Vdd = 2.5 V, 2.8 V, 3.0 V or 3.3 V
f = 125 MHz, Vdd = 1.8 V
f = 125 MHz, Vdd = 2.5 V, 2.8 V, 3.0 V or 3.3 V
f = 125 MHz, Vdd = 1.8 V
Integration bandwidth = 900 kHz to 7.5 MHz
Integration bandwidth = 12 kHz to 20 MHz
ms
ns
ms
Measured from the time Vdd reaches its rated minimum value
f = 137 MHz. For other frequencies, T_oe = 100 ns + 3 * cycles
Measured from the time ST pin crosses 50% threshold
Table 2. Pin Description
Pin
Symbol
Output Enable
OE/ST /NC
̅ ̅̅
Functionality
H
[1]
: specified frequency output
L: output is high impedance. Only output driver is disabled.
H
[1]
: specified frequency output
L: output is low (weak pull down). Device goes to sleep mode. Supply
current reduces to I_std.
Any voltage between 0 and Vdd or Open
[1]
: Specified frequency
output. Pin 1 has no function.
Electrical ground
Oscillator output
Power supply voltage
[2]
OE/ST /NC
̅ ̅̅
1
Top View
4
VDD
1
Standby
No Connect
2
3
4
GND
OUT
VDD
Power
Output
Power
GND
2
3
OUT
Figure 1. Pin Assignments
Notes:
1. In OE or ST mode, a pull-up resistor of 10 kΩ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.
̅ ̅̅
2. A capacitor of value 0.1 µF or higher between Vdd and GND is required.
Rev 1.06
Page 2 of 18
www.sitime.com
SiT8009B
High Frequency, Low Power Oscillator
Table 3. Absolute Maximum Limits
Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance
of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.
Parameter
Storage Temperature
Vdd
Electrostatic Discharge
Soldering Temperature (follow standard Pb free soldering guidelines)
Junction Temperature
[3]
Note:
3. Exceeding this temperature for extended period of time may damage the device.
Min.
-65
-0.5
–
–
–
Max.
150
4
2000
260
150
Unit
°C
V
V
°C
°C
Table 4. Thermal Consideration
[4]
Package
7050
5032
3225
2520
2016
JA, 4 Layer Board
(°C/W)
142
97
109
117
152
JA, 2 Layer Board
(°C/W)
273
199
212
222
252
JC, Bottom
(°C/W)
30
24
27
26
36
Note:
4. Refer to JESD51 for
JA
and
JC
definitions, and reference layout used to determine the
JA
and
JC
values in the above table.
Table 5. Maximum Operating Junction Temperature
[5]
Max Operating Temperature (ambient)
70°C
85°C
Maximum Operating Junction Temperature
80°C
95°C
Note:
5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.
Table 6. Environmental Compliance
Parameter
Mechanical Shock
Mechanical Vibration
Temperature Cycle
Solderability
Moisture Sensitivity Level
Condition/Test Method
MIL-STD-883F, Method 2002
MIL-STD-883F, Method 2007
JESD22, Method A104
MIL-STD-883F, Method 2003
MSL1 @ 260°C
Rev 1.06
Page 3 of 18
www.sitime.com
SiT8009B
High Frequency, Low Power Oscillator
Test Circuit and Waveform
[6]
Vdd
Vout
Test Point
tr
4
Power
Supply
0.1 uF
1
2
3
15pF
(including probe
and fixture
capacitance)
tf
80% Vdd
50%
20% Vdd
High Pulse
(TH)
Period
Low Pulse
(TL)
Vdd
OE/ST Function
1 kΩ
Figure 2. Test Circuit
Note:
6. Duty Cycle is computed as Duty Cycle = TH/Period.
Figure 3. Waveform
Timing Diagrams
90% Vdd
Vdd
Vdd
50% Vdd
T_resume
Pin 4 Voltage
T_start
No Glitch
during start up
[7]
ST Voltage
CLK Output
HZ
T_start: Time to start from power-off
CLK Output
HZ
T_resume: Time to resume from ST
Figure 4. Startup Timing (OE/ ST̅ Mode)
̅ ̅
Figure 5. Standby Resume Timing ( ST̅ Mode Only)
̅ ̅
Vdd
50% Vdd
OE Voltage
T_oe
Vdd
OE Voltage
50% Vdd
T_oe
CLK Output
HZ
T_oe: Time to re-enable the clock output
CLK Output
HZ
T_oe: Time to put the output in High Z mode
Figure 6. OE Enable Timing (OE Mode Only)
Figure 7. OE Disable Timing (OE Mode Only)
Note:
7. SiT8009 has “no runt” pulses and “no glitch” output during startup or resume.
Due to the shortage of masks in China, many masks from abroad are imported. If there is English on them, it will not be difficult for engineers. However, if it is a foreign language other than English...
[size=14px]Help:[/size] [size=14px]The serial port interrupt of routine 6657 has been adjusted using the program's dynamic configuration. It mainly maps the serial port 0 interrupt (No. 164) to the ho...
Headhunting position [Shenzhen] Job responsibilities: 1. Develop embedded software design solutions based on product functional requirements; 2. Responsible for the ARM software development and applic...
[size=4][color=#ff0000][b]Bidding dynamics: 29447945 1300 Core Coins[/b][/color] [/size][hr][size=4]During this festival, the Core Coin auction of our forum is still going on, and five auctions will b...
[Lazy self-care fish tank control system] BLE_MESH fish tank light peripheral production
Pack the fish tank light today
1. Use dark plexiglass panels as side panels and add waterproof joints2. Transpa...
蓝雨夜onsemi and Avnet IoT Innovation Design Competition
This paper designs a car video monitoring system based on Samsung's S3C2410 as the control center. The system is mainly composed of S3C2410 processor, USB camera, and touch screen. It explains the ...[Details]
NXP Semiconductors NV (NASDAQ: NXPI) announced the appointment of Dr. Tingwei Li as Chairman of NXP Greater China. Dr. Li Tingwei will be fully responsible for all matters of NXP China and related ...[Details]
By the end of 2019, the auto market is still going through a cold winter. Along with the news of layoffs, there is also a wave of transformation of auto companies. Auto giants and parts manufacturer...[Details]
1 Introduction
With the rapid development of microelectronics technology, communication technology, control technology and semiconductor technology, as well as the increasing requirements for ...[Details]
Common assembly instructions 1. General registers and program counter in ARM state (1) Registers used by each working mode in ARM state (2) Current Program Status Register (CPSR) N: Whether the r...[Details]
On a certain day in a certain delivery room, you were born (power up), but you didn't cry. The doctor lifted you up and slapped you hard on the butt, and you burst into tears (reset, reset successful)...[Details]
0 Introduction
The launch and operation of any new communication service cannot be separated from a powerful, effective and highly reliable transmission system. The problem that follows is...[Details]
Experiment name: Static digital tube experiment wiring instructions: Experimental phenomenon: After downloading the program, the leftmost digital tube of the "nixie tube module" displays the number 0...[Details]
To reduce the power supply interference of AD conversion, Mega16 chip has independent AD power supply. The official document recommends connecting a 10uH inductor (L1) in series with VCC, a...[Details]
1. Command format description There is a lot of information on how to use the command on the Internet. I will just briefly explain it here: Each command of U-Boot is defined by the U_Boot_CMD macro. ...[Details]
OFweek Cup · OFweek 2023 China
Robot
Industry Annual Selection (abbreviated as OFweek Robot Awards 2023) is jointly organized by OFweek, China's high-tech industry portal, and its authorita...[Details]
In recent years, the market for high-brightness light-emitting diodes (HB-LEDs) has grown rapidly, more than doubling the efficacy (lumens per watt or lm/W) of LEDs, making them more suitable for...[Details]
user: I want to buy a good clamp meter recently, and the first brand that pops into my mind is Fluke. Fluke started out by making multimeters and is recognized as a trump card in our industry. The qu...[Details]
NandFlash and NorFlash are both types of Flash, both are scattered memory, and both are disk storage media, but NandFlash is generally larger, while NorFlash is smaller, and NorFlash is more expensive...[Details]
1. Background
Modbus and Profibus are two commonly used communication protocols in industrial control systems. They play an important role in the field of automation. Modbus is a serial commun...[Details]