EEWORLDEEWORLDEEWORLD

Part Number

Search

C1206X5R250-184KG6P

Description
Ceramic Capacitor, Multilayer, Ceramic, 25V, 10% +Tol, 10% -Tol, X5R, -/+15ppm/Cel TC, 0.18uF, 1206,
CategoryPassive components    capacitor   
File Size1022KB,14 Pages
ManufacturerVENKEL LTD
Environmental Compliance
Download Datasheet Parametric View All

C1206X5R250-184KG6P Overview

Ceramic Capacitor, Multilayer, Ceramic, 25V, 10% +Tol, 10% -Tol, X5R, -/+15ppm/Cel TC, 0.18uF, 1206,

C1206X5R250-184KG6P Parametric

Parameter NameAttribute value
Is it Rohs certified?conform to
Objectid941955455
package instruction, 1206
Reach Compliance Codecompliant
ECCN codeEAR99
capacitance0.18 µF
Capacitor typeCERAMIC CAPACITOR
dielectric materialsCERAMIC
high1.828 mm
JESD-609 codee4
length3.2 mm
multi-layerYes
negative tolerance10%
Number of terminals2
Maximum operating temperature85 °C
Minimum operating temperature-55 °C
Package formSMT
method of packingTR, 7 Inch
positive tolerance10%
Rated (DC) voltage (URdc)25 V
seriesC
size code1206
Temperature characteristic codeX5R
Temperature Coefficient15% ppm/°C
Terminal surfaceGold (Au) - with Nickel (Ni) barrier
width1.6 mm
Ceramic Chip Capacitors
Multilayer chip capacitors have a low residual inductance, an excellent frequency
response and minimal stray capacitance since there are no leads. These characteristics
enable design to be very close to the theoretical values of the capacitors.
NP0/C0g:
15%
10%
5%
0%
-5%
-10%
-15%
-55°C
-25°C
0°C
SPECIFICATIONS:
Typical Capacitance Change vs. Temperature
OPERATING TEMPERATURE RANGE:
TEMPERATURE COEFFICIENT:
TEMPERATURE VOLTAGE COEFFICIENT:
DISSIPATION FACTOR:
INSULATION RESISTANCE:
AGEING:
WITHSTANDING VOLTAGE:
TEST PARAMETERS:
25°C
50°C
75°C
100°C
125°C
CAPACITANCE TOLERANCE:
OPERATING TEMPERATURE RANGE:
TEMPERATURE COEFFICIENT:
TEMPERATURE VOLTAGE COEFFICIENT:
DISSIPATION FACTOR:
-55°C to +125°C
0 ±30PPM/°C
0 ±30PPM/°C
0.1% MAX.
>1000 ohms F or 100 G ohms, whichever is less at 25°C, VDCW.
(The IR at 125°C is 10% of the value at 25°C)
None
>2.5 times VDCW
1MHz ± 100KHz at 1.0 ± 0.2 Vrms
100 pF, 25°C
1KHz ± 100Hz at 1.0 ± 0.2 Vrms > 100 pF, 25°C
B,C,D,F,G,J,K
-55°C to +125°C
0 ±15%∆°C MAX.
X7R not applicable
For 50 volts and 100 volts: 2.5% MAX.;
For 25 Volts 3.5 %( 0201, 0402, 0603, sizes
If 7% Max, for Values
0.33uF) for 16 Volts: 3.5% Max (except 0402
0.33uF & 0603
0.15uF DF is 5% Max)
For 10 Volts: 5% Max
For 6.3 Volts: 10% Max
For Values
10uF For all voltage offerings, the DF is 10% Max
>1000 ohms F or 100 G ohms, whichever is less at 25°C, VDCW.
(The IR at 125°C is 10% of the value at 25°C)
2.5% per decade hour, typical
>2.5 times VDCW
1KHz ± 100Hz at 1.0 ± 0.2 Vrms > 100 pF, 25°C
J,K,M
-55°C to +85°C
0 ±15%∆°C MAX.
X5R not applicable
For 50 Volts and 100 Volts 2.5% Max
For 25 Volts: 3.5% Max (0201, 0402, 0603,
0.33uF DF is 7% Max)
For 16 Volts: 3.5% Max (except 0402
0.33uF & 0603
0.15uF DF is
5% Max)
For 10 Volts 5.0% Max; For 4.0 Volts and 6.3Volts: 10% Max
For values
10uF the D.F. is 10% Max.
>1000 ohms F or 100 G ohms, whichever is less
at 25°C, VDCW. (10,000 ohms at 125°C)
2.5% per decade hour, typical
>2.5 times VDCW
1KHZ ± 100Hz at 1.0 ± 0.2 Vrms > 100 pF, 25°C
K,M
+10°C to +85°C
+22% - 56%∆°C MAX.
4.0% MAX.
>100 ohms F or 10 G ohms, whichever is less at 25°C, VDCW.
5% per decade hour, typical
>2.5 times VDCW
1KHz ± 100Hz at 0.5 ± 0.1 Vrms, 25°C
M,Z
-30°C to +85°C
+22% - 82%∆°C MAX.
For 25 volts and 50 volts: 5% MAX.;
For 16 volts: 7% MAX.; For 10 volts: 9% MAX.;
For 6.3 volts: 11% MAX.
For higher Cap values > 10µF, the D.F. is 20% MAX.
>100 ohms F or 10 G ohms, whichever is less at 25°C, VDCW.
7% per decade hour, typical
>2.5 times VDCW
1KHz ± 100Hz at 1.0 ± 0.2 Vrms, 25°C
M,Z
X7R:
15%
10%
5%
0%
-5%
-10%
-15%
-55°C
-25°C
0°C
SPECIFICATIONS:
Typical Capacitance Change vs. Temperature
INSULATION RESISTANCE:
25°C
50°C
75°C
100°C
125°C
AGEING:
WITHSTANDING VOLTAGE:
TEST PARAMETERS:
*
CAPACITANCE TOLERANCE:
OPERATING TEMPERATURE RANGE:
TEMPERATURE COEFFICIENT:
TEMPERATURE VOLTAGE COEFFICIENT:
DISSIPATION FACTOR:
X5R:
15%
10%
5%
0%
-5%
-10%
-15%
-55°C
-25°C
0°C
SPECIFICATIONS:
Typical Capacitance Change vs. Temperature
INSULATION RESISTANCE:
25°C
50°C
75°C
100°C
125°C
Z5U:
20%
0%
-20%
-40%
-60%
-80%
AGEING:
WITHSTANDING VOLTAGE:
TEST PARAMETERS:
*
CAPACITANCE TOLERANCE:
OPERATING TEMPERATURE RANGE:
TEMPERATURE COEFFICIENT:
DISSIPATION FACTOR:
INSULATION RESISTANCE:
AGEING:
WITHSTANDING VOLTAGE:
TEST PARAMETERS:
CAPACITANCE TOLERANCE:
OPERATING TEMPERATURE RANGE:
TEMPERATURE COEFFICIENT:
DISSIPATION FACTOR:
SPECIFICATIONS:
Typical Capacitance Change vs. Temperature
-55°C
-25°C
0°C
25°C
50°C
75°C
100°C
125°C
Y5V:
40%
20%
0%
-20%
-40%
-60%
-80%
-100%
-55°C
-25°C
0°C
SPECIFICATIONS:
Typical Capacitance Change vs. Temperature
25°C
50°C
75°C
100°C
125°C
INSULATION RESISTANCE:
AGEING:
WITHSTANDING VOLTAGE:
TEST PARAMETERS:
*
CAPACITANCE TOLERANCE:
5
1KHz ± 100Hz at 1.0 ± 0.2 Vrms
<
10uF (10 V min.)
1KHz ± 100Hz at 0.5 ± 0.1 Vrms
<
10uF (6.3V max.)
120Hz ± 24Hz at 0.5 ± 0.1 Vrms
10uF
All components in this section are RoHS compliant per the EU directives and definitions.
*
Test parameters for High Value Caps - X7R, X5R and Y5V:
Has anyone used Sensortile Box? Please help~
I just bought a Sensortile Box, and I can't find any information about it online. I want to ask if anyone in the forum has come across it? I want to use STM32Cube IDE to program, but I can't find the ...
bunbun MEMS sensors
The serial clock SCL and serial data SDA of the PROM are connected to the master MCU and then to the SC of the clock IC...
The serial clock SCL and serial data SDA of the PROM are connected to the master MCU and then connected to the SCL and SDA of the clock IC. What does this mean?...
QWE4562009 Integrated technical exchanges
Cost-cutting design cannot be delayed
Original article by Mr. Gaosu | Jiang JieThe price of memory sticks tripled in half a year. The memory sticks that were teased by Duanyou as the "best financial product of the year" in 2017 are still ...
yvonneGan PCB Design
The MP3 purchased with E coins has arrived. It’s never too late to learn English!
A few days ago, I was riding the subway and met an international friend. After chatting with him, I found that my English listening and speaking skills have seriously declined since graduation! {:1_11...
anananjjj Talking
EEWORLD University Hall----Live Replay: Renesas RA MCU family members grow rapidly, helping to build safe and stable industrial control systems
Live replay: Renesas RA MCU family members are growing rapidly, helping to build safe and stable industrial control systems : https://training.eeworld.com.cn/course/6050...
hi5 Integrated technical exchanges
MSP430F5529 library functions
The MSP430F5529 library function I wrote during college took me almost a year to write, from the initial 1.0 version to the final 2.+ version, and finally I had a library function that satisfied me. M...
灞波儿奔 Microcontroller MCU

Technical ResourceMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号