EEWORLDEEWORLDEEWORLD

Part Number

Search

MO2021ME5-C0J-33N0-0121169999E

Description
LVCMOS Output Clock Oscillator,
CategoryPassive components    oscillator   
File Size858KB,12 Pages
ManufacturerDaishinku Corp.
Websitehttp://www.kds.info/
Environmental Compliance
Download Datasheet Parametric View All

MO2021ME5-C0J-33N0-0121169999E Overview

LVCMOS Output Clock Oscillator,

MO2021ME5-C0J-33N0-0121169999E Parametric

Parameter NameAttribute value
Is it Rohs certified?conform to
Objectid7202691501
Reach Compliance Codeunknown
Other featuresLVTTL COMPATIBLE OUTPUT ALSO AVAILABLE; TR
maximum descent time2 ns
Frequency Adjustment - MechanicalNO
frequency stability30%
Installation featuresSURFACE MOUNT
Nominal operating frequency121.169999 MHz
Maximum operating temperature125 °C
Minimum operating temperature-55 °C
Oscillator typeLVCMOS
Output load15 pF
physical size3.05mm x 1.75mm x 1.45mm
longest rise time2 ns
Maximum supply voltage3.63 V
Minimum supply voltage2.97 V
Nominal supply voltage3.3 V
surface mountYES
maximum symmetry55/45 %
MO2021
High Frequency, -55°C to +125°C One-output Clock Generator
Features
Applications
Ruggedized equipment in harsh operating environment
Frequencies between 119.342001 MHz to 137 MHz accurate to 6
decimal places
Operating temperature from -55°C to +125°C
Supply voltage of +1.8V or +2.5V to +3.3V
Excellent total frequency stability as low as ±20 ppm
Low power consumption of +4.9 mA typical at 125 MHz, +1.8V
LVCMOS/LVTTL compatible output
5-pin SOT23-5 package: 2.9mm x 2.8mm
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
Electrical Specifications
Table 1. Electrical Characteristics
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values
are at +25°C and nominal supply voltage.
Parameters
Output Frequency Range
Symbol
f
Min.
119.342001
-20
Frequency Stability
F_stab
-25
-30
-50
Operating Temperature Range
T_use
-55
+1.62
+2.25
Supply Voltage
Vdd
+2.52
+2.7
+2.97
+2.25
Current Consumption
Idd
OE Disable Current
I_od
Standby Current
I_std
Typ.
+1.8
+2.5
+2.8
+3.0
+3.3
+6.2
+5.4
+4.9
+2.6
+1.4
+0.6
1.0
1.3
1.0
Max.
137
+20
+25
+30
+50
+125
+1.98
+2.75
+3.08
+3.3
+3.63
+3.63
+8.0
+7.0
+6.0
+4.7
+4.5
+8.5
+5.5
+4.0
Unit
MHz
ppm
ppm
ppm
ppm
°C
V
V
V
V
V
V
mA
mA
mA
mA
mA
μA
μA
μA
No load condition, f = 125 MHz, Vdd = +2.8V, +3.0V or +3.3V
No load condition, f = 125 MHz, Vdd = +2.5V
No load condition, f = 125 MHz, Vdd = +1.8V
Vdd = +2.5V to +3.3V, OE = Low, Output in high Z state.
Vdd = +1.8V, OE = Low, Output in high Z state.
Vdd = +2.8V to +3.3V,
ST
= Low, Output is weakly pulled down
Vdd = +2.5V,
ST
= Low, Output is weakly pulled down
Vdd = +1.8V,
ST
= Low, Output is weakly pulled down
All Vdds
Vdd = +2.5V, +2.8V, +3.0V or +3.3V, 20% - 80%
Vdd =+1.8V, 20% - 80%
Vdd = +2.25V - +3.63V, 20% - 80%
IOH = -4.0 mA (Vdd = +3.0V or +3.3V)
IOH = -3.0 mA (Vdd = +2.8V or +2.5V)
IOH = -2.0 mA (Vdd = +1.8V)
IOL = +4.0 mA (Vdd = +3.0V or +3.3V)
IOL = +3.0 mA (Vdd = +2.8V or +2.5V)
IOL = +2.0 mA (Vdd = +1.8V)
Inclusive of Initial tolerance at +25°C, 1st year aging at +25°C,
and variations over operating temperature, rated power supply
voltage and load (15 pF ± 10%).
Condition
Refer to
Table 14
for the exact list of supported frequencies
Frequency Range
Frequency Stability and Aging
Operating Temperature Range
Supply Voltage and Current Consumption
LVCMOS Output Characteristics
Duty Cycle
Rise/Fall Time
DC
Tr, Tf
45
Output High Voltage
VOH
90%
55
2.0
2.5
3.0
%
ns
ns
ns
Vdd
Output Low Voltage
VOL
10%
Vdd
Daishinku Corp.
Rev. 1.01
1389 Shinzaike, Hiraoka-cho, Kakogawa, Hyogo 675-0194 Japan
+81-79-426-3211
www.kds.info
Revised September 29, 2015
ESP32-C3 RISC-V microcontroller information leak
Six years on from the introduction of the Espressif ESP8266, we might be led to believe that the focus has shifted to the newer dual-core ESP32. However, there is a twist in the form of the newly anno...
dcexpert MicroPython Open Source section
Review summary: Flathead RVB2601
Event details: [Rewarded review: Pingtouge RISC-V low power board-RVB2601] Review | [Rewarded review: Pingtouge RISC-V low power board-RVB2601] Free trial_Electronic Engineering World (eeworld.com.cn)...
okhxyyo XuanTie RISC-V Activity Zone
EEWORLD University ---- Using lithium-ion batteries more safely and efficiently - Battery Management System (BMS) Solution
Safer and more efficient use of lithium-ion batteries - Battery Management System (BMS) Solution : https://training.eeworld.com.cn/course/5541...
hi5 Power technology
EXG Extreme Gravity Racing
[:D]EXG Extreme Gravity Racer Volvo's "Extreme Gravity Racer" is made entirely of F-1 racing materials, has no engine, and has a very low driver's seat. It costs $30,000. It can only travel on steep s...
frozenviolet Automotive Electronics
Talk: Small capital investment
A few days ago, I read a post about a netizen who invested 200,000 yuan in the financial market. Because I hosted the development of a futures trading system software a few years ago, I had a lot of c...
bigbat Talking
Where does the EG8010 dead time go?
Dear brothers, please help me, why is the dead time of my EG8010 driver card gone? It is set to 1us. When I test it on the machine, it has overcurrent protection with a few hundred watts and keeps res...
皓禹HY Switching Power Supply Study Group

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号