Operating Temperature Range (Note 3).... –40°C to 85°C
Specified Temperature Range (Note 4) .... –40°C to 85°C
Junction Temperature (Note 5) ............................. 150°C
Junction Temperature (DD Package)..................... 150°C
Storage Temperature Range .................. –65°C to 150°C
Storage Temperature Range
(DD Package) ..................................... –65°C to 150°C
Lead Temperature (Soldering, 10 sec) .................. 300°C
pin conFiguraTion
TOP VIEW
OUT A
–IN A
+IN A
I
SET
A
V
–
1
2
3
4
5
–
+
10 V
+
9 OUT B
11
–
+
TOP VIEW
OUT A
–IN A
+IN A
I
SET
A
V
–
1
2
3
4
5
–
+
TOP VIEW
10
9
8
7
6
V
OUT B
–IN B
+IN B
I
SET
B
+
8 –IN B
7 +IN B
6 I
SET
B
OUT 1
V
–
2
+IN 3
+
–
6 V
+
5 I
SET
4 –IN
–
+
DD PACKAGE
10-LEAD (3mm
×
3mm) PLASTIC DFN
T
JMAX
= 150°C,
θ
JA
= 43°C/W (NOTE 5)
EXPOSED PAD (PIN 11) CONNECTED TO V
–
(PCB CONNECTION OPTIONAL)
MS PACKAGE
10-LEAD PLASTIC MSOP
T
JMAX
= 150°C,
θ
JA
= 120°C/W (NOTE 5)
S6 PACKAGE
6-LEAD PLASTIC TSOT-23
T
JMAX
= 150°C,
θ
JA
= 230°C/W (NOTE 5)
orDer inForMaTion
LEAD FREE FINISH
LT6211CDD#PBF
LT6211IDD#PBF
LT6211CMS#PBF
LT6211IMS#PBF
LT6210CS6#PBF
LT6210IS6#PBF
LEAD BASED FINISH
LT6211CDD
LT6211IDD
LT6211CMS
LT6211IMS
LT6210CS6
LT6210IS6
TAPE AND REEL
LT6211CDD#TRPBF
LT6211IDD#TRPBF
LT6211CMS#TRPBF
LT6211IMS#TRPBF
LT6210CS6#TRPBF
LT6210IS6#TRPBF
TAPE AND REEL
LT6211CDD#TR
LT6211IDD#TR
LT6211CMS#TR
LT6211IMS#TR
LT6210CS6#TR
LT6210IS6#TR
PART MARKING*
LBCD
LBCD
LTBBN
LTBBP
LTA3
LTA3
PART MARKING*
LBCD
LBCD
LTBBN
LTBBP
LTA3
LTA3
PACKAGE DESCRIPTION
10-Lead (3mm
×
3mm) Plastic DFN
10-Lead (3mm
×
3mm) Plastic DFN
10-Lead Plastic MSOP
10-Lead Plastic MSOP
6-Lead Plastic TSOT-23
6-Lead Plastic TSOT-23
PACKAGE DESCRIPTION
10-Lead (3mm
×
3mm) Plastic DFN
10-Lead (3mm
×
3mm) Plastic DFN
10-Lead Plastic MSOP
10-Lead Plastic MSOP
6-Lead Plastic TSOT-23
6-Lead Plastic TSOT-23
SPECIFIED TEMPERATURE RANGE
0°C to 70°C
–40°C to 85°C
0°C to 70°C
–40°C to 85°C
0°C to 70°C
–40°C to 85°C
SPECIFIED TEMPERATURE RANGE
0°C to 70°C
–40°C to 85°C
0°C to 70°C
–40°C to 85°C
0°C to 70°C
–40°C to 85°C
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
For more information on lead free part marking, go to:
http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to:
http://www.linear.com/tapeandreel/
62101fc
2
LT6210/LT6211
elecTrical characTerisTics
apply over the specified operating temperature range, otherwise specifications are at T
A
= 25°C. For V
+
= 5V, V
–
= –5V: R
SET
= 20k to
ground, A
V
= +2, R
F
= R
G
= 887Ω, R
L
= 150Ω; For V
+
= 3V, V
–
= 0V: R
SET
= 0Ω to V
–
, A
V
= +2, R
F
= 887Ω, R
G
= 887Ω to 1.5V,
R
L
= 150Ω to 1.5V unless otherwise specified.
V
+
= 5V, V
–
= –5V, I
S
= 6mA
SYMBOL PARAMETER
V
OS
I
IN+
I
IN–
en
+i
n
–i
n
R
IN+
C
IN+
V
INH
V
INL
V
OUTH
V
OUTL
CMRR
–I
CMRR
PSRR
–I
PSRR
I
S
Input Offset Voltage
l
(I
S
= 6mA per Amplifier)
The
l
denotes the specifications which
V
+
= 3V, V
–
= 0V, I
S
= 6mA
MIN
TYP
–1
–3
2.5
6.5
4.5
25
0.3
1.8
–3.8
2.65
2.6
–4.55
–4.4
1.7
2
2.2
0.8
2.85
2.75
0.05
0.1
46
±1.5
±2
60
±7
±8
8.5
10
0.2
85
2
5.8
±7
±8
8.3
9
1.2
MAX
±6.5
±10
±6.5
±8
±25
±40
UNITS
mV
mV
µA
µA
µA
µA
nV/√Hz
pA/√Hz
pA/√Hz
MΩ
pF
V
V
V
V
V
0.3
0.35
V
V
V
dB
dB
µA/V
µA/V
dB
µA/V
µA/V
mA
mA
CONDITIONS
MIN
TYP
–1
–3.5
MAX
±6
±9
±7
±9
±39
±55
Noninverting Input Current
l
Inverting Input Current
l
–13.5
f = 1kHz, R
F
= 887Ω,
R
G
= 46.4Ω, R
S
= 0Ω
f = 1kHz
f = 1kHz
V
IN
= V
+
– 1.2V to V
–
+ 1.2V
f = 100kHz
(Note 10)
(Note 10)
R
L
= 1k (Note 11)
R
L
= 150Ω (Note 11)
R
L
= 150Ω (Note 11)
R
L
= 1k (Note 11)
R
L
= 150Ω (Note 11)
R
L
= 150Ω (Note 11)
V
IN
= V
+
– 1.2V to V
–
+ 1.2V
l
l
l
l
Input Noise Voltage Density
Input Noise Current Density
Input Noise Current Density
Noninverting Input Resistance
Noninverting Input Capacitance
Input Voltage Range, High
Input Voltage Range, Low
Output Voltage Swing, High
6.5
4.5
25
0.5
3.8
2
2
4.2
–4.2
4.4
4.2
4.8
4.6
–4.95
–4.8
l
l
Output Voltage Swing, Low
Common Mode Rejection Ratio
Inverting Input Current
Common Mode Rejection
Power Supply Rejection Ratio
Inverting Input Current Power
Supply Rejection
Supply Current per Amplifier
46
43
50
0.15
V
IN
= V
+
– 1.2V to V
–
+ 1.2V
l
V
S
= ±1.5V to ±6V (Note 6)
V
S
= ±1.5V to ±6V (Note 6)
l
l
60
85
2
6
l
62101fc
3
LT6210/LT6211
elecTrical characTerisTics
apply over the specified operating temperature range, otherwise specifications are at T
A
= 25°C. For V
+
= 5V, V
–
= –5V: R
SET
= 20k to
ground, A
V
= +2, R
F
= R
G
= 887Ω, R
L
= 150Ω; For V
+
= 3V, V
–
= 0V: R
SET
= 0Ω to V
–
, A
V
= +2, R
F
= 887Ω, R
G
= 887Ω to 1.5V,
R
L
= 150Ω to 1.5V unless otherwise specified.
V
+
= 5V, V
–
= –5V, I
S
= 6mA
SYMBOL PARAMETER
I
OUT
R
OL
SR
t
pd
BW
t
s
t
f
, t
r
dG
dP
HD2
HD3
Maximum Output Current
Transimpedance, ∆V
OUT
/∆I
IN–
Slew Rate
Propagation Delay
–3dB Bandwidth
Settling Time
Differential Gain
Differential Phase
2nd Harmonic Distortion
3rd Harmonic Distortion
CONDITIONS
R
L
= 0Ω (Notes 7, 11)
V
OUT
= V
+
– 1.2V to V
–
+ 1.2V
(Note 8)
50% V
IN
to 50% V
OUT
,
100mV
P-P
, Larger of t
pd+
, t
pd–
<1dB Peaking, A
V
= 1
To 0.1% of V
FINAL
, V
STEP
= 2V
(Note 9)
(Note 9)
f = 1MHz, V
OUT
= 2V
P-P
f = 1MHz, V
OUT
= 2V
P-P
l
(I
S
= 6mA per Amplifier)
The
l
denotes the specifications which
V
+
= 3V, V
–
= 0V, I
S
= 6mA
MIN
±45
115
700
1.5
200
20
2
0.20
0.10
–70
–75
65
115
200
2.4
120
25
3.5
0.35
0.20
–65
–75
TYP
MAX
UNITS
mA
kΩ
V/µs
ns
MHz
ns
ns
%
Deg
dBc
dBc
MIN
±75
65
500
TYP
MAX
Small-Signal Rise and Fall Time 10% to 90%, V
OUT
= 100mV
P-P
otherwise specifications are at T
A
= 25°C. For V
+
= 5V, V
–
= –5V: R
SET
= 56k to ground, A
V
= +2, R
F
= R
G
= 1.1k, R
L
= 150Ω; For V
+
= 3V,
V
–
= 0V: R
SET
= 10k to V
–
, A
V
= +2, R
F
= 1.27k, R
G
= 1.27k to 1.5V, R
L
= 150Ω to 1.5V unless otherwise specified.
V
+
= 5V, V
–
= –5V, I
S
= 3mA
SYMBOL PARAMETER
V
OS
I
IN+
I
IN–
en
+i
n
–i
n
R
IN+
C
IN+
V
INH
V
INL
V
OUTH
V
OUTL
CMRR
–I
CMRR
Input Offset Voltage
l
(I
S
= 3mA per Amplifier)
The
l
denotes the specifications which apply over the specified operating temperature range,
V
+
= 3V, V
–
= 0V, I
S
= 3mA
MIN
TYP
–1.5
–1.5
–3
7
1.5
15
1
1.8
–3.8
2.6
2.55
–4.55
–4.4
2.5
2
2.1
0.9
2.9
2.8
0.05
0.1
46
±1.5
±2
0.4
1.2
MAX
±5.5
±8.5
±5
±7
±15
±20
CONDITIONS
MIN
TYP
–1
–1.5
MAX
±5.5
±8.5
±5
±7
±36
±52
UNITS
mV
mV
µA
µA
µA
µA
nV/√Hz
pA/√Hz
pA/√Hz
MΩ
pF
V
V
V
V
V
Noninverting Input Current
l
Inverting Input Current
l
–12
f = 1kHz, R
F
= 1.1k,
R
G
= 57.6Ω, R
S
= 0Ω
f = 1kHz
f = 1kHz
V
IN
= V
+
– 1.2V to V
–
+ 1.2V
f = 100kHz
(Note 10)
(Note 10)
R
L
= 1k (Note 11)
R
L
= 150Ω (Note 11)
R
L
= 150Ω (Note 11)
R
L
= 1k (Note 11)
R
L
= 150Ω (Note 11)
R
L
= 150Ω (Note 11)
V
IN
= V
+
– 1.2V to V
–
+ 1.2V
l
l
l
l
Input Noise Voltage Density
Input Noise Current Density
Input Noise Current Density
Noninverting Input Resistance
Noninverting Input Capacitance
Input Voltage Range, High
Input Voltage Range, Low
Output Voltage Swing, High
7
1.5
15
0.5
3.8
3
2
4.1
–4.1
4.3
4.1
4.8
4.6
–4.95
–4.8
l
l
Output Voltage Swing, Low
0.3
0.35
V
V
V
dB
dB
µA/V
µA/V
62101fc
Common Mode Rejection Ratio
Inverting Input Current
Common Mode Rejection
46
43
50
0.3
V
IN
= V
+
– 1.2V to V
–
+ 1.2V
l
4
LT6210/LT6211
elecTrical characTerisTics
apply over the specified operating temperature range, otherwise specifications are at T
A
= 25°C. For V
+
= 5V, V
–
= –5V: R
SET
= 56k to
ground, A
V
= +2, R
F
= R
G
= 1.1k, R
L
= 150Ω; For V
+
= 3V, V
–
= 0V: R
SET
= 10k to V
–
, A
V
= +2, R
F
= 1.27k, R
G
= 1.27k to 1.5V,
R
L
= 150Ω to 1.5V unless otherwise specified.
V
+
= 5V, V
–
= –5V, I
S
= 3mA
SYMBOL PARAMETER
PSRR
–I
PSRR
I
S
I
OUT
R
OL
SR
t
pd
BW
t
s
t
f
, t
r
dG
dP
HD2
HD3
Power Supply Rejection Ratio
Inverting Input Current Power
Supply Rejection
Supply Current per Amplifier
l
(I
S
= 3mA per Amplifier)
The
l
denotes the specifications which
V
+
= 3V, V
–
= 0V, I
S
= 3mA
MIN
60
±7
±8
4.1
4.55
±45
120
600
3.1
100
20
3
0.35
0.30
–65
–65
65
120
150
4.7
70
25
5.6
0.42
0.44
–60
–65
TYP
85
1.5
3
±7
±8
4.1
4.4
MAX
UNITS
dB
µA/V
µA/V
mA
mA
mA
kΩ
V/µs
ns
MHz
ns
ns
%
Deg
dBc
dBc
CONDITIONS
V
S
= ±1.5V to ±6V (Note 6)
V
S
= ±1.5V to ±6V (Note 6)
l
l
MIN
60
TYP
85
1.5
3
MAX
Maximum Output Current
Transimpedance, ∆V
OUT
/∆I
IN–
Slew Rate
Propagation Delay
–3dB Bandwidth
Settling Time
Differential Gain
Differential Phase
2nd Harmonic Distortion
3rd Harmonic Distortion
R
L
= 0Ω (Notes 7, 11)
V
OUT
= V
+
– 1.2V to V
–
+ 1.2V
(Note 8)
50% V
IN
to 50% V
OUT
,
100mV
P-P
, Larger of t
pd+
, t
pd–
<1dB Peaking, A
V
= 1
To 0.1% of V
FINAL
, V
STEP
= 2V
(Note 9)
(Note 9)
f = 1MHz, V
OUT
= 2V
P-P
f = 1MHz, V
OUT
= 2V
P-P
l
±70
65
450
Small-Signal Rise and Fall Time 10% to 90%, V
OUT
= 100mV
P-P
otherwise specifications are at T
A
= 25°C. For V
+
= 5V, V
–
= –5V: R
SET
= 1M to ground, A
V
= +2, R
F
= R
G
= 11k, R
L
= 1k; For V
+
= 3V,
V
–
= 0V: R
SET
= 270k to V
–
, A
V
= +2, R
F
= 9.31k, R
G
= 9.31k to 1.5V, R
L
= 1k to 1.5V unless otherwise specified.
V
+
= 5V, V
–
= –5V, I
S
= 300µA
SYMBOL PARAMETER
V
OS
I
IN+
I
IN–
en
+i
n
–i
n
R
IN+
C
IN+
V
INH
V
INL
V
OUTH
V
OUTL
Input Offset Voltage
l
(I
S
= 300µA per Amplifier)
The
l
denotes the specifications which apply over the specified operating temperature range,
[b]MY-IMX6-EK140P Linux-4.1.15 Test Manual[/b] From Mingyuan Zhirui's wiki Directory [[url=http://wiki.myzr.com.cn/index.php?title=MY-IMX6-EK140P_Linux-4.1.15_%E6%B5%8B%E8%AF%95%E6%89%8B%E5%86%8C#][co...
Live replay: HARTING - How to quickly and cost-effectively install cables in electrical control cabinets : https://training.eeworld.com.cn/course/67824...
Machine vision is a comprehensive technology, including image processing, mechanical engineering technology, control, electric light source lighting, optical imaging, sensors, analog and digital video...
[i=s] This post was last edited by a media student on 2019-4-21 15:01 [/i] [align=center][align=center][size=4][b]【RT-Thread Reading Notes】 1. First Reading of RT-Thread RTOS [/b][/size][/align][/alig...
I have a question about an EXCEL curve fitting formula. I can't get the value of Y by substituting the values of X as 0, 150, and 300. The value of Y is incorrect. What is wrong? If any forum friends ...
Sensor and Testing Technology : https://training.eeworld.com.cn/course/5033Through this course, learners can understand the basic concepts of sensors and their basic characteristics (static and dynami...
Codasip supports automotive manufacturers in achieving breakthroughs in innovation and differentiation capabilities Munich, Germany - April 2022 - Codasip, a leader in custom RISC-V processor semic...[Details]
We were able to build a multi-voltage (6, 9, 12 V) linear voltage regulator circuit. Not only can it provide multiple output voltages with a single supply voltage, the circuit also has good voltage s...[Details]
summary:
In order to realize the real-time monitoring and centralized management of robots of different brands and realize the intercommunication of robots, a robot remote monitoring system ba...[Details]
Specific implementation functions Specific functions: (1) It can display different Chinese characters and English characters according to their internal codes, and initially displays "Electronic En...[Details]
Since the beginning of the 21st century, along with the deepening of energy transformation, my country's energy system has undergone major changes, and the role of the power system in the energy su...[Details]
In this automotive electronics digital assembly workshop, there are all kinds of automated assembly lines, and FANUC CRX collaborative robots efficiently and stably transport and assemble parts o...[Details]
Solid electrolyte
At the 2015 Materials Research Conference held in San Francisco this month, PATHION demonstrated two LiRAP-based superionic conductor solid-state electrolytes: Li3ClO for ...[Details]
The Redmi Note 9 series launch conference will officially start tomorrow. This time, the Redmi Note 9 series brings three models, officially called the "Three Musketeers", including Jiuheng S...[Details]
Connect the assembly test program:
B_COM0SS:; Comparator CM0:
CLR CM0M; Clear CM0M register.; Reset comparator CM0.;
Set the function mode of comparator CM0.;
B0BCLR FCM0SF; Normal compa...[Details]
Abstract: The MAX8538 dual synchronous buck controller provides +5V and -5V outputs at 3A. One controller is used as a synchronous rectifier step-down (buck) converter, while the other outputs a negat...[Details]
Whether you need a field service management app, a supplier portal, an e-commerce app, or a business-specific app, companies should first understand the different types of mobile architectures. Tod...[Details]
Data collection and transmission is very important for subsequent enterprise analysis and decision-making, and real-time data collection can improve the overall production awareness, so as to take ...[Details]
Synopsys Helps Linx Printing Deploy Coverity Static Application Security Testing
Accelerate the implementation of the code "zero defect" strategy
In the highly competitive...[Details]
Infineon Technologies will showcase innovative solutions in the fields of environmentally friendly, safe and intelligent transportation, as well as green and smart living spaces
Inf...[Details]