Application Report
SLOA277 – January 2019
Application Design Guidelines for LM324/LM358 Devices
Ronald Michallick
........................
Including LM124, LM224, LM2902, LM158, LM258, LM2904, LM321, TS321
ABSTRACT
The LM324 and LM358 family of op amps are popular and long-lived general purpose amplifiers due to
their flexibility, availability, and cost-effectiveness. It is important to understand how these op amps are
different than most other op amps before using them in your design. The information in this application
guide will help promote first time design successes.
Contents
1
2
3
4
5
6
7
8
Devices Covered in Application Note
.....................................................................................
3
Input Stage Considerations
................................................................................................
6
Output Stage Considerations
...............................................................................................
9
AC Performance
...........................................................................................................
14
Low V
CC
Guidance
..........................................................................................................
20
Comparator Usage
.........................................................................................................
24
Unused Amp Connections and Inputs Connected Directly to Ground
..............................................
27
Conclusion
..................................................................................................................
29
List of Figures
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Device Schematic from Data Sheet
.......................................................................................
3
Input Stage Schematic with All Current Source Connections
..........................................................
6
Unity Gain Buffer Test Configuration
......................................................................................
7
Input Current vs Input Voltage
.............................................................................................
7
Output Voltage vs Input Voltage
...........................................................................................
7
Schematic of Output Driver Stage With Highlighted Sink Drivers
.....................................................
9
Typical Output Low Voltage vs Output Sinking Current
...............................................................
10
................................................
Schematic of Output Driver Stage with Highlighted Source Driver and Current Limiter
..........................
Plot Showing V
OH
Relative to V
CC
(V
OH
- V
CC
) vs Load Current (I
OH
)
..................................................
Plot Showing Short Circuit Current vs Junction Temperature
........................................................
I
OL
vs Non-Inverting Pin Voltage, V
CC
= 5 V, V
OUT
= 2 V, T
J
= 125°C
11
11
12
13
Schematic With the Following Slew Rate Components Highlighted: Tail Current (Blue), Compensation
Capacitor (Blue), Collector Current (Green), Collector to Base Capacitance (Red)
..............................
15
............................................................
Slew Rate vs Temperature for LM2902QDRQ1
.......................................................................
Plot Showing Slew Rate vs Temperature for LM2902DR
15
15
Schematic with the Following Time Delay Components Highlighted: Shared Input Node (Green),
Compensation Capacitor (Red), and Output Transistors (Blue)
.....................................................
16
Crossover Test Schematic
................................................................................................
17
LM324 Crossover Test Waveforms
......................................................................................
18
Second Crossover Test Schematic
......................................................................................
18
LM358 Crossover Test Waveforms
......................................................................................
19
Output Current vs Output Voltage for Pull Up Resistor Usage
.......................................................
20
3-V Audio Bandpass Amplifier Schematic
..............................................................................
21
Simulation of 1-kHz Sine Wave Transient
..............................................................................
22
Bench Testing 1-kHz Maximum Amplitude Without Clipping Waveforms
..........................................
23
Application Design Guidelines for LM324/LM358 Devices
Copyright © 2019, Texas Instruments Incorporated
SLOA277 – January 2019
Submit Documentation Feedback
1
www.ti.com
24
25
26
27
28
29
30
31
32
Amplifier Voltage Gain vs Frequency
....................................................................................
23
Overload Recovery Time from V
OL
vs V
IN+
, V
ID
= 200 mV, V
CC
= 30 V
...............................................
24
Overload Recovery from V
OL
State
.......................................................................................
25
Overload Recovery Multiplier vs Input Differential Voltage (V
ID
)
.....................................................
26
Slew Rate Factor vs Input Differential Voltage (V
ID
)
...................................................................
26
...........................................................
Acceptable Connection Practices for Single and Dual Supplies
....................................................
Less Than Acceptable Connection Practices for Single and Dual Supplies
.......................................
Potentially Harmful Connection Practices for Single and Dual Supplies
...........................................
Best Connections Practices for Single and Dual Supplies
List of Tables
27
28
28
28
1
2
3
4
5
Base Part Number, Channel Count, and Temperature Range
........................................................
3
Maximum Input Offset Error at 25°C for Each Base Part Number with V
IO
Grade Options
........................
4
Data Sheet V
OL
Parameter Setup Conditions
............................................................................
9
Data Sheet Showing Output Current for 200 mV Output Voltage
.....................................................
9
Typical Slew Rate and Gain Bandwidth
.................................................................................
14
Trademarks
All trademarks are the property of their respective owners.
2
Application Design Guidelines for LM324/LM358 Devices
Copyright © 2019, Texas Instruments Incorporated
SLOA277 – January 2019
Submit Documentation Feedback
www.ti.com
Devices Covered in Application Note
1
1.1
Devices Covered in Application Note
Common Schematic
This application note covers all op amps that are based on the schematic in
Figure 1,
which contains a
unique output stage that was revolutionary when released. Unlike other op amps of the time, it supports a
near ground output voltage useful for single supply designs. The ~50-µA Current Regulator can pull the
output close to ground because the other transistor emitters do not have a strong opposing current flow,
unlike other op amps of this time period.
V
CC+
≈6-
µ
A
Current
Regulator
≈6-
µ
A
Current
Regulator
≈100-
µ
A
Current
Regulator
IN−
OUT
IN+
≈50-
µ
A
Current
Regulator
GND (or V
CC−
)
To Other Amplifier
COMPONENT COUNT
Epi-FET
Diodes
Resistors
Transistors
Capacitors
1
2
7
51
2
Figure 1. Device Schematic from Data Sheet
1.2
Base Part Numbers
The temperature range and channel count are used to create the base part number. The “-N” in a part
name denotes devices acquired from National Semiconductor that matched an existing Texas Instruments
(TI) base part number. There are no orderable part number duplicates because National Semiconductor
and TI used different package suffixes.
Table 1. Base Part Number, Channel Count, and Temperature Range
Temperature
Range
–55°C to 125°C
–40°C to 125°C
–40°C to 85°C
–25°C to 85°C
0°C to 70°C
Automotive Q1
—
TS321
TS321
TS321
TS321
Single
—
—
LM321
LM321
LM321
TS321-Q1
LM158
LM2904
LM2904
LM258
LM358
LM2904-Q1
LM2904B
LM358B
Dual
LM158-N
LM158-N
LM2904-N
LM258-N
LM358-N
LM124
LM2902
LM2902
LM224
LM324
Quad
LM124-N
LM124-N
LM2902-N
LM224-N
LM324-N
LM2902-Q1
Part numbers in bold have operating temperature regions that match the given temperature range exactly.
Part numbers that are not in bold can operate within and beyond the given temperature range. Please
note that, counterintuitively, LM2904 is a dual op amp, whereas LM2902 is a quad op amp.
SLOA277 – January 2019
Submit Documentation Feedback
Application Design Guidelines for LM324/LM358 Devices
Copyright © 2019, Texas Instruments Incorporated
3
Devices Covered in Application Note
www.ti.com
1.3
Input Voltage Offset Grades
There are also grade options for V
IO
(also known as V
os
) tolerance. An “A” in the part number suffix will
have better V
IO
specifications compared to the same part number without an “A”.
Table 2. Maximum Input Offset Error at 25°C for Each Base Part Number with V
IO
Grade Options
Single
Part Number
TS321
TS321-Q1
LM321
V
IO
Max 25°C
4 mV
4 mV
7 mV
Part Number
LM158A
LM158A-N
LM2904AV
LM2904AV-Q1
LM258A
LM358A
LM358A-N
LM358B
LM2904B
LM158
—
—
LM158-N
LM258
LM258-N
LM2904
LM2904-N
LM2904-Q1
LM358
LM358-N
Dual
V
IO
Max 25°C
2 mV
2 mV
2 mV
2 mV
3 mV
3 mV
3 mV
3 mV
3 mV
5 mV
5 mV
5 mV
5 mV
7 mV
7 mV
7 mV
7 mV
7 mV
Part Number
LM124A
LM124A-N
LM2902KAV
LM2902KAV-Q1
LM224A
LM324A
LM324A-N
LM124
LM124-N
LM224
LM224-N
LM2902K
LM2902
LM2902-Q1
LM324
LM324-N
—
Quad
V
IO
Max 25°C
2 mV
2 mV
2 mV
2 mV
3 mV
3 mV
3 mV
5 mV
5 mV
5 mV
5 mV
7 mV
7 mV
7 mV
7 mV
7 mV
—
1.4
Maximum Supply Voltage
The default maximum supply voltage is 30 V; however LM290X devices have a 26-V maximum supply
rating. The exceptions are LM2902 and LM2904 devices having a “V” in the suffix, which denotes
maximum voltage up to 32 V. Two examples are LM2902KAVQDR and LM2904AVQDR. All devices with
a “B” in the suffix have a maximum supply voltage rated at 36 V; examples are LM358BDR,
LM2904BADR.
1.5
High Reliability Options
There are many high reliability options for dual and quad op amps.
Dual op amp product list: LM158QML-SP, LM158QML, LM158, LM158A, LM158-N, LM258A-EP, LM258-
N, LM2904-EP
Quad op amp product list: LM124AQML-SP, LM124-N, LM124A, LM124AQML, LM124M, LM224-N,
LM324-N-MIL, LM2902-EP
The qualifications and ratings of these devices are not covered in this application note.
1.6
HBM ESD Grade
For ESD purposes, the “K” and “B” suffixes in part names have the same meaning. A “K” or "B" in the
suffix of a quad op amp denotes an HBM ESD rating of 2 kV. For example, LM324K, LM324KA,
LM2902K, LM2902KA, LM2902KAV, LM2904B and LM358B all have a 2-kV HBM rating.
When greater ESD protection is desired, designers should incorporate system-level ESD solutions.
4
Application Design Guidelines for LM324/LM358 Devices
Copyright © 2019, Texas Instruments Incorporated
SLOA277 – January 2019
Submit Documentation Feedback
www.ti.com
Devices Covered in Application Note
1.7
LM358B, LM358BA, LM2904B, LM2904BA
The “B” suffix is used to denote new device variant releases based on an advanced wafer process that
provides many device improvements. Maximum supply voltage is increased to 36 V; EMI filters are added
to inputs; input offset voltage is reduced (3 mV or 1.8 mV for parts with an ‘A’ in their suffix ); tested low
V
OL
sink drive current is increased (from 12 µA to 50 µA) to support lower resistance feedback networks
and more load current; 2-kV HBM ESD is standard. Most data sheet specifications use a setup of a load
terminated to mid-supply to match modern data sheet test conditions.
SLOA277 – January 2019
Submit Documentation Feedback
Application Design Guidelines for LM324/LM358 Devices
Copyright © 2019, Texas Instruments Incorporated
5