QPL product with established reliability (ER): meets
requirements of MIL-PRF-55182/9
•
Load life stability: ± 0.005 % for 2000 h, 0.3 W at + 125 °C
•
Temperature coefficient of resistance (TCR): ± 2 ppm/°C max.
(- 55 °C to + 175 °C)
•
Resistance tolerance: to ± 0.005 %
•
Thermal EMF: < 0.1 µV/°C
•
Qualified resistance range: 4.99
Ω
to 121 kΩ (RNC90Y)
30.1
Ω
to 121 kΩ (RNC90Z)
•
Specially conditioned non-QPL resistors available
See data sheet “Improved Performance Tested”
•
Fast thermal stabilization
•
Rise time: 1 ns without ringing
•
Special coatings that provide a cushioning layer which isolates
the resistive element from external stresses and moisture
•
Electrostatic discharge (ESD) above 25 000 V
•
Non inductive, non capacitive design
•
Current noise < - 42 dB
•
Prototype sample available from 72 h
INTRODUCTION
Vishay Military Established Reliability resistors are available
in resistance values from 4.99
Ω
through 121 kΩ and for
tolerances from ± 0.005 % to ± 1.0 %. The same resistors are
also available as a non-qualified product for customers
desiring higher or lower resistance values and the same or
better performance capabilities. (See table 2) Both the
qualified and the non-qualified version are manufactured on
the same production line facilities and are subjected to the
same process, lot control, conditioning, and GRP A (100 %)
screening. Qualified versions receive additional MIL Group B
and C testing.
TABLE 1 - SPECIFICATIONS COMPARISON
SPECIFICATION
RNC90Y (QUALIFIED)
RNC90Z (QUALIFIED)
S555 (NON-QUALIFIED)
Z555 (NON-QUALIFIED)
MIL-PRF-55182/9
MIL-PRF-55182/9
VISHAY PERFORMANCE
VISHAY PERFORMANCE
CHARACTERISTIC Y LIMITS CHARACTERISTIC Z LIMITS
LIMITS
LIMITS
± 5 ppm/°C
± 2 ppm/°C
± 5 ppm/°C
± 3 ppm/°C ± 2.5 ppm/°C ± 2 ppm/°C
(- 55 °C to + 125 °C)
(- 55 °C to + 175 °C)
(- 55 °C to + 125 °C)
± 10 ppm/°C
(- 55 °C to + 125 °C)
(+ 125 °C to + 175 °C)
4.99
Ω
to
> 25
Ω
to
4.99
Ω
to 121 k
Ω
30.1
Ω
to 121 k
Ω
1
Ω
to 150 k
Ω
> 80
Ω
25
Ω
80
Ω
Level R
Level R
Not specified
Not specified
Temperature
Coefficient of
Resistance
Resistance Range
Failure Rate
Load-Life Stability
0.3 W at + 125 °C
at 2000 h
at 10 000 h
Current Noise
High-Frequency
Operation
Rise Time
Inductance
3)
(L)
Capacitance (C)
Voltage Coefficient
Working Voltage
4)
Thermal EMF
5)
± 0.05 % maximum
ΔR
± 0.5 % maximum
ΔR
Not specified
± 0.05 % maximum
ΔR
± 0.5 % maximum
ΔR
Not specified
± 0.015 % maximum
ΔR
2)
± 0.05 % maximum
ΔR
2)
- 40 dB minimum
1.0 ns at 1 k
Ω
0.1 µH maximum
0.08 µH typical
1.0 pF maximum
0.5 pF typical
0.0001 %/V
300 V maximum
0.1 µV/°C maximum
1 µV/W maximum
± 0.015 % maximum
ΔR
2)
± 0.05 % maximum
ΔR
2)
- 40 dB minimum
1.0 ns at 1 k
Ω
0.1 µH maximum
0.08 µH typical
1.0 pF maximum
0.5 pF typical
0.0001 %/V
300 V maximum
0.1 µV/°C maximum
1 µV/W maximum
Not specified
Not specified
Not specified
0.0005 %/V
300 V maximum
Not specified
Not specified
Not specified
Not specified
0.0005 %/V
300 V maximum
Not specified
Notes
1. Qualification and failure rate verification test data is maintained by Vishay Foil and is available upon request. Lot traceability and identification
data is maintained by Vishay Foil for 7 years.
2. Load life
ΔR
Maximum can be reduced by 80 % through Enhanced Reliability Testing (ERT). Consult Vishay Applications Engineering for
details.
3. Inductance (L) due mainly to the leads.
4. Not to exceed power rating of resistor.
5. µV/°C relates to EMF due to lead temperature differences and µV/W due to power applied to the resistor.
6. 0.200" (5.08 mm) lead spacing available - specify RNC90T for RNC90Y, and RNC90S for RNC90Z.
Document Number: 63007
Revision: 23-Mar-10
For any questions, contact:
foil@vishaypg.com
www.foilresistors.com
1
Military and Space Established Reliability
Vishay Foil Resistors
FIGURE 1 - COMPARISON OF RNC90Y TO RNC90Z TEMPERATURE COEFFICIENT OF RESISTANCE
+ 1000
RNC90Y
+ 1000
+ 1000
RNC90Z
+ 1000
+ 500
+ 400
ΔR/R
(ppm)
ΔR/R
(ppm)
+ 160
0
- 160
+ 300
+ 200
0
- 200
- 300
- 400
- 500
- 1000
- 55
25
Temperature (°C)
125
- 1000
175
- 1000
- 55
25
Temperature (°C)
125
- 1000
175
Specification ± 5 ppm/°C ± 10 ppm/°C
Specification ± 2 ppm/°C
FIGURE 2 - TRIMMING TO VALUES
(Conceptual Illustration)
FIGURE 3 - POWER DERATING CURVE
+ 70 °C
Interloop Capacitance
Reduction in Series
Current Path
Before Trimming
Current Path
After Trimming
Trimming Process
Removes this Material
from Shorting Strip Area
Changing Current Path
and Increasing
Resistance
Percent of Rated Power
200
150
100
50
0
- 50
Rated Power
Mutual Inductance
Reduction due
to Change in
Current Direction
- 25
0
+ 25 + 50 + 75 + 100 + 125 + 150 + 175
Ambient Temperature °C
Note:
Foil shown in
black,
etched spaces in
white
FIGURE 4 - IMPRINTING AND DIMENSIONS
RNC90Y and RNC90Z Military Approved Resistors
Front View
L
VISHAY
18612
XXXXX J
Side View
Manufacturers
Identification
Number
W
Resistance
Tolerance
Code
Lead Material
#22 AWG
(0.025 Dia.)
Solder Coated
Copper
Rear View
Model Number
XXXXX
100R01
B
R
H
Mfr. Code
07
11
B
Factory Year Week
Resistance
Value Code
Failure Rate Code
(Not Present If
Non-Qualified)
LL
ST
Jan Designator
(Non Present If
Non-Qualified)
SW
LS
1)
Note
1. 0.200" (5.08 mm) lead spacing available - specify RNC90T for RNC90Y, and RNC90S for RNC90Z
www.foilresistors.com
2
For any questions, contact:
foil@vishaypg.com
Document Number: 63007
Revision: 23-Mar-10
Military and Space Established Reliability
Vishay Foil Resistors
TABLE 2 - MODEL SELECTION
STANDARD RESISTANCE
TOLERANCE
TIGHTEST
LOOSEST
%
%
30.1 to 121K
± 0.005
± 1.0
16.2 to 30.0
± 0.05
± 1.0
RNC90Y
4.99 to 16.0
± 0.1
± 1.0
RNC90Z
30.1 to 121K
± 0.005
± 1.0
30.1 to 121K
± 0.005
± 1.0
20 to < 30.1
± 0.01
± 1.0
5 to < 20
± 0.05
± 1.0
S555
(NON QPL)
2 to < 5
± 0.1
± 1.0
1 to < 2
± 0.5
± 1.0
> 121K to 150K
± 0.005
± 1.0
30.1 to 121K
± 0.005
± 1.0
Z555
20 to < 30.1
± 0.01
± 1.0
(NON QPL)
4.99 to < 20R
± 0.05
± 1.0
Note
MODEL
NUMBER
RESISTANCE
RANGE
(Ω)
FAILURE
RATE
M, P, R
(See
Table 3)
AVERAGE
WEIGHT
(g)
at + 70 °C at + 125 ° C
0.6 W
0.6 W
0.3 W
0.3 W
0.6
0.6
W: 0.105 ± 0.010
L: 0.300 ± 0.010
H: 0.326 ± 0.010
ST: 0.015 ± 0.005
SW: 0.040 ± 0.005
LL: 1.000 ± 0.125
LS: 0.150 ± 0.005
2.67 ± 0.25
7.62 ± 0.25
8.28 ± 0.25
0.38 ± 0.13
1.02 ± 0.13
25.4 ± 3.18
3.81 ± 0.13
AMBIENT
POWER RATING
DIMENSIONS
INCHES
mm
-
0.6 W
0.3 W
0.6
-
-
0.4 W
0.6 W
0.2 W
0.3 W
0.6
0.6
• S555 and Z555 units are manufactured on the same production line facilities and are subjected to all the same process and lot control
requirements imposed on RNC90Y (Z) version, as well as all of the special screening, environmental conditioning and documentation
stipulations outlined in MIL-PRF 55182/9
TABLE 3 - GLOBAL PART NUMBER INFORMATION
NEW GLOBAL PART NUMBER: Y1189100R500AR0L (preferred part number format)
DENOTES PRECISION
Y
VALUE
R
=
Ω
K
= kΩ
LIFE FAILURE RATE (LFR)
R
= ± 0.01 %
P
= ± 0.1 %
M
= ± 1.0 %
AER*
0
= standard
1 - 999
= custom
Y
1
1
8
9
1
0
0
R
5
0
0
A
R
0
L
PRODUCT CODE
1189
= RNC90Z
0089
= RNC90Y
1508
= RNC90T
1506
= RNC90S
0088
= S555
1288
= Z555
RESISTANCE TOLERANCE
V
= ± 0.005 %
T
= ± 0.01 %
A
= ± 0.05 %
B
= ± 0.1 %
D
= ± 0.5 %
F
= ± 1.0 %
PACKAGING
L
= bulk pack
R
= tape and reel
FOR EXAMPLE: ABOVE GLOBAL ORDER Y1189 100R500 A R 0 L:
TYPE: RNC90Z
VALUE: 100.5
Ω
ABSOLUTE TOLERANCE: ± 0.05 %
LIFE FAILURE RATE (LFR): ± 0.01 %
AER: standard
PACKAGING: bulk pack
HISTORICAL PART NUMBER: RNC90Z 100R50 A R B (will continue to be used)
RNC90Z
MODEL
RNC90Z
RNC90S
RNC90Y
RNC90T
S555
Z555
Note
* For non-standard requests, please contact application engineering.
Document Number: 63007
Revision: 23-Mar-10
For any questions, contact:
foil@vishaypg.com
www.foilresistors.com
3
100R50
OHMIC VALUE
100.5
Ω
A
RESISTANCE
TOLERANCE
V
= ± 0.005 %
T
= ± 0.01 %
A
= ± 0.05 %
B
= ± 0.1 %
D
= ± 0.5 %
F
= ± 1.0 %
R
LIFE FAILURE
RATE (LFR)
R
= ± 0.01 %
P
= ± 0.1 %
M
= ± 1.0 %
B
PACKAGING
B
= bulk pack
Military and Space Established Reliability
Vishay Foil Resistors
CAGE #18612
“Commercial and Government Entity”
Formerly “FSCM”
The response of military and non military grade resistors to environmental stresses can be made better by “Improved
Performance Testing” (IPT). The IPT part will see burn-in and cycling that removes the “knee” from the normal drift of non IPT
parts. (See Table 4 for the improvement to expect in military parts when calling for Vishay recommended screening). Users
should be aware that IPT testing renders the part non QPL and so a 3XXXXX part number will be assigned by Vishay. Consult
Applications Engineering for details and ordering advice.
TABLE 4 - IMPROVED PERFORMANCE TESTING (NON-QPL APPROVED) VS. QPL
TEST
GROUP
I
TEST
Power Conditioning
Thermal Shock and
Overload Combined
Resistance Temperature
Characteristic
Low Temperature Storage
Low Temperature Operation
Terminal Strength
DWV
Insulation Resistance
Resistance to Soldering Heat
Moisture Resistance
Shock
Vibration
Load Life at + 125 °C; 2000 h
Load Life at + 125 °C; 10 000 h
+ 85 °C Power Rating
+ 70 °C Power Rating
+ 25 °C Power Rating
Storage Life
High Temperature Exposure
Max. Allowance Reactance
Current Noise
Voltage Coefficient
Thermal EMF
not done
4.8.2
4.8.3
4.8.9
RNC90Y
MIL-PRF-55182/9
METHOD PARAGRAPH
LIMITS
-
-
± 0.05 %
± 5 ppm/°C
VISHAY
IMPROVED PERFORMANCE
TESTING
(IPT) LIMITS
± 0.0025 %
± 0.0025 %
± 0.0025 %
< ± 2 ppm/°C
(- 55 °C to + 125 °C)
(Can be sorted for tighter tracking)
± 0.0025 %
± 0.0025 %
± 0.001 %
± 0.001 %
> 10
4
MΩ
± 0.001 %
± 0.015 %
± 0.0025 %
± 0.0025 %
± 0.005 % (50 ppm)
± 0.015 % (150 ppm)
± 0.005 % (50 ppm)
± 0.005 % (50 ppm)
± 0.005 % (50 ppm)
± 0.0025 %
± 0.005 %
<1%
< - 42 dB
< 0.00001 %/V
(< 0.1 ppm/V)
0.1 µV/°C
II
III
IV
V
V (a)
V (b)
VI
VII
VIII
4.8.23
4.8.10
4.8.11
4.8.12
4.8.13
4.8.14
4.8.15
4.8.16
4.8.17
4.8.18
4.8.18
-
4.8.18
-
-
4.8.19
-
-
4.8.20
-
-
± 0.05 %
± 0.05 %
± 0.02 %
± 0.02 %
10
4
MΩ
± 0.02 %
± 0.05 %
± 0.01 %
± 0.02 %
± 0.05 %
± 0.5 %
-
± 0.05 %
-
-
± 0.5 %
-
-
0.0005 %/V
(5 ppm/V)
-
FIGURE 5 - IPT IMPRINTING AND DIMENSIONS
in inches (millimeters)
Front View
0.300 ± 0.010
(7.62 ± 0.25)
VISHAY
XXXX
3XXXXX
Date Code
01
10
Year Week
0.015 ± 0.005
(0.381 ± 0.13)
Model Number
0.150 ± 0.005
(3.81 ± 0.13)
Lead Material
#22 AWG
(0.025 Dia.)
Solder Coated
Copper
0.040 ± 0.005
(1.02 ± 0.13)
Side View
0.105 ± 0.010
(2.67 ± 0.25)
Rear View
Optional
Customer P/N
6 Digits Maximum
Resistance
Value Code
Tolerance
1.00 ± 0.125
(25.4 ± 3.18)
0.326 ± 0.010
(8.28 ± 0.25)
XXXXXX
100R01
0.01 %
www.foilresistors.com
4
For any questions, contact:
foil@vishaypg.com
Document Number: 63007
Revision: 23-Mar-10
Legal Disclaimer Notice
Vishay Precision Group
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Precision Group, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay Precision Group”), disclaim any and all liability for any errors, inaccuracies or incompleteness
contained herein or in any other disclosure relating to any product.
Vishay Precision Group disclaims any and all liability arising out of the use or application of any product described
herein or of any information provided herein to the maximum extent permitted by law. The product specifications do
not expand or otherwise modify Vishay Precision Group’s terms and conditions of purchase, including but not limited
to the warranty expressed therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay Precision Group.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay Precision Group products not expressly indicated
for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay Precision Group for
any damages arising or resulting from such use or sale. Please contact authorized Vishay Precision Group
personnel to obtain written terms and conditions regarding products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
As shown below, this is the output side of the push-pull boost circuit
After the transformer output is full-wave rectified by the rectifier bridge,
Is the circuit of L1, D1, R1, and C1 an absorption c...
Hello and welcome to the Hardware Simulation Blog Series! In this series, we will review and explore the various signal integrity (SI) issues that impact today’s high-speed printed circuit board (PCB)...
Portal for previous articles of the project:[Flathead RVB2601 Creative Application Development] Introduction and use of KV components of RVB2601[Flathead RVB2601 Creative Application Development] Intr...
[i=s]This post was last edited by littleshrimp on 2020-5-2 17:52[/i]It is very troublesome to program the SensorTile.box without an emulator, because there is no reset button on the board, and switchi...
littleshrimpST Sensors & Low Power Wireless Technology Forum
If my pad spacing is 7mil, but I want the spacing between the copper and the line to be 10mil, how can I set the clearance so that it does not affect the copper?...
For most MCUs, the official IDE generally has debugging functions, which can be used with the JTAG interface, and also supports variable viewing, breakpoints, etc. Most small and medium-sized program...[Details]
The multimeter measurement method refers to the method of using a multimeter to measure the voltage, current, and resistor values in a circuit to determine faults. Therefore, the multimeter measure...[Details]
Today, digital blogger Panda suddenly released a revelation, revealing information about the external sound quality of vivo's foldable screen mobile phone X Fold. According to the information rev...[Details]
uCLinux is an excellent embedded Linux version, which is the abbreviation of micro-Conrol-Linux. It inherits the excellent characteristics of standard Linux, and after miniaturization in various aspe...[Details]
Automation is one of the key factors in increasing factory output and reducing manufacturing costs. Technological advances such as relays, PLCs, and industrial PCs (IPCs) are driving industrial aut...[Details]
According to Taiwanese media reports, TSMC plans to further increase its 8-inch mature process foundry quotation in the third quarter, while the 12-inch mature and advanced processes are still under ...[Details]
Statistics from AVIC Cloud Network show that from June 21 to June 27, Xiaomi and Redmi ranked the top two in the online TV market share, while Huawei and Honor ranked 12th and 14th respectively. Li...[Details]
Deep neural networks are a subset of machine learning algorithms used for a variety of classification problems, including image recognition and machine vision (used by self-driving cars and other rob...[Details]
STM32 has a built-in temperature sensor, and the voltage of the temperature sensor can be read through the ADC_IN16 channel. A calculation formula is given in the STM32 technical reference manual:
...[Details]
With the release of Huawei Mate X2 and Xiaomi MIX FOLD, the popularity of foldable screen mobile phones has risen again. As Samsung has the most complete production line of foldable screen mobile pho...[Details]
Variable-frequency Drive (VFD) is a power control device that uses frequency conversion technology and microelectronics technology to control AC motors by changing the frequency of the motor's work...[Details]
0. Design Summary
Today's society is an era of information explosion, but in most catering companies, the traditional way of ordering is still used, that is, when guests walk into a restaurant or b...[Details]
Today, Motorola officially released a notice, announcing that it will hold a new product launch conference on September 9. Judging from the copywriting and pictures, the new phone that Motorola will ...[Details]
According to foreign media reports, the next generation of new iPhones will see 5 new features of iOS 13 at WWDC. As we all know, Apple often does not show the best iOS13 features at once, such as th...[Details]
The transition from the LiDAR route to the visual route has greatly improved the perception ability. The secret of Xiaopeng's visual intelligent driving evolution lies in the implementation of the ...[Details]