Ordering Information .................................................................................................................................................................... 2
7.1. User Programming Interface ..................................................................................................................................... 19
7.2. Start-up output frequency and signaling types .......................................................................................................... 19
8.1. Any-frequency function ............................................................................................................................................. 20
9 I C/SPI Control Registers...................................................................................................................................................... 29
9.1. Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 29
9.2. Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 30
9.3. Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 31
9.4. Register Address: 0x03. Flac-N PLL Integer Value and Flac-N PLL Fraction MSW ................................................. 32
9.6. Register Address: 0x05. PostDiv, Driver Control ...................................................................................................... 33
9.7. Register Address: 0x06. mDriver, Driver Control ...................................................................................................... 34
2
10 I C Operation ........................................................................................................................................................................ 35
2
10.1. I C protocol ............................................................................................................................................................... 35
2
10.2. I C Timing Specification ............................................................................................................................................ 37
2
10.3. I C Device Address Modes ....................................................................................................................................... 38
Dimensions and Patterns ........................................................................................................................................................... 45
Additional Information ................................................................................................................................................................ 46
Revision History ......................................................................................................................................................................... 47
Rev 0.991
Page 3 of 47
www.sitime.com
SiT3521
1 to 340 MHz Elite™ I
2
C/SPI Programmable Oscillator
1 Electrical Characteristics
PRELIMINARY
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Frequency Stability
Symbol
f
F_stab
Min.
1
-10
-20
-25
-50
First Year Aging
Operating Temperature Range
F_1y
T_use
–
-20
-40
-40
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
Duty Cycle
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
VIH
VIL
Z_in
DC
T_start
T_oe_hw
70%
–
–
45
–
–
Typ.
–
–
–
–
–
±1
–
–
–
3.3
3.0
2.8
2.5
–
–
100
–
–
–
Max.
340
+10
+20
+25
+50
–
+70
+85
+105
Supply Voltage
3.63
3.3
3.08
2.75
–
30%
–
55
3.0
3.8
V
V
V
V
Vdd
Vdd
kΩ
%
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
OE pin
OE pin
OE pin, logic high or logic low
Unit
MHz
ppm
ppm
ppm
ppm
ppm
°C
°C
°C
1 -year aging at 25°C
Extended Commercial
Industrial
Extended Industrial. Available only for I C operation, not SPI.
2
st
Condition
Factory or user programmable, accurate to 6 decimal places
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations.
Frequency Range
Frequency Stability
Temperature Range
Input Characteristics – OE Pin
Output Characteristics
Startup and Output Enable/Disable Timing
T_oe_sw
–
–
6.5
µs
Rev 0.991
Page 4 of 47
www.sitime.com
SiT3521
1 to 340 MHz Elite™ I
2
C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
PRELIMINARY
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.15
–
89
58
–
32
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B.
T_jitt
–
0.225
0.1
0.225
0.11
1
0.340
0.14
0.340
0.15
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
80
61
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
400
455
50
1.375
50
470
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.1
0.21
0.1
1
0.275
0.12
0.367
0.12
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V
mV
mV
V
mV
ps
f = 156.25MHz See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
[i=s]This post was last edited by Aguilera on 2019-12-10 22:02[/i]PrefaceHello everyone, I am Chuan Nan. This time I plan to use STM32 to DIY a PLC.PLC is mainly suitable for people related to electri...
The basic block diagram of the PDP color TV microcontroller circuit is shown in the figure below. As can be seen from the figure, the microcontroller circuit is mainly composed of MCU and working cond...
I would like to ask, what is the highest sampling rate that the McASP of TMS320C6748 can support in IIS or TDM format (DSP as slave), I want to output an audio signal with a sampling rate of 768Khz wh...
The cause and effect of this title should be reversed, because I want to adjust the timer interrupt of the microbit main control board, and seek answers on the Internet. Finally, I learned that the mo...
After we made a buzzer together last time, your brain circuits were very fast. Now let's strike while the iron is hot and think about it. In the past, we have been using digital pins (such as D0, D1, ...
It is currently a critical period for FF's equity financing. The visit of the UAE Consul General is seen in the industry as more than just a visit. Some industry insiders even bluntly stated that thi...[Details]
01 Industrial problems and solutions With the rapid development of automobile connectivity and intelligence , new network security and data security issues continue to arise. The boundaries of a...[Details]
On November 15, the annual " Qualcomm Greater China University Cooperation Project Exchange Meeting" was held at Peking University. Experts, scholars and students from Peking University, Tsinghua U...[Details]
According to the Securities Times, a few days ago, Korean media reported that TCL has been removed from large stores in the United States, and its sales may lose 40%. Samsung Electronics and LG Elect...[Details]
On December 18, 2021, the 2021 RT-Thread Developer Conference hosted by Ruiside Technology came to a splendid conclusion in Shenzhen. As the most anticipated annual technology feast in the AIOT indus...[Details]
1. Concept of three-phase asynchronous motor
The three-phase asynchronous motor is a type of electric motor that is powered by a 380V three-phase AC power supply (with a phase difference of 12...[Details]
1. Introduction of BSS clearing (Why do we need to clear BSS)
Let's take an example:
#include "s3c2440_soc.h"
#include "uart.h"
char g_Char...[Details]
1. Introduction
Light-emitting diode (LED) display screens have the advantages of high brightness, clear images, bright colors, low driving voltage, low power consumption, vibration resistance...[Details]
1. Correctly set the DDRx direction register before performing read and write operations on the I/O port.
2. The initial state of the I/O port after reset is all input working mode, the internal p...[Details]
The California Supreme Court reportedly ruled this week in favor of Waymo, the self-driving car company under Google's parent company Alphabet, allowing the company to keep the specific details of it...[Details]
External interrupt INT0 means that when the external conditions are met, a register INT0IF inside the microcontroller will be set to 1.
#include
__CONFIG(1,XT); //Crystal oscillator is...[Details]
According to research, driver assistance systems can have a positive effect on the driver's driving behavior and safety, and can also protect the environment and improve traffic efficiency. With th...[Details]
Liquor Methanol Tester HM-C12 can quickly and quantitatively detect the methanol content in various types of liquor. The instrument reserves other test programs and ports, and can easily add test ite...[Details]
On October 21, the Gansu Provincial Department of Industry and Information Technology publicly solicited opinions and suggestions on the "Implementation Plan for the Construction and Operation Mana...[Details]