Ordering Information .................................................................................................................................................................... 2
7.1. User Programming Interface ..................................................................................................................................... 19
7.2. Start-up output frequency and signaling types .......................................................................................................... 19
8.1. Any-frequency function ............................................................................................................................................. 20
9 I C/SPI Control Registers...................................................................................................................................................... 29
9.1. Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 29
9.2. Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 30
9.3. Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 31
9.4. Register Address: 0x03. Flac-N PLL Integer Value and Flac-N PLL Fraction MSW ................................................. 32
9.6. Register Address: 0x05. PostDiv, Driver Control ...................................................................................................... 33
9.7. Register Address: 0x06. mDriver, Driver Control ...................................................................................................... 34
2
10 I C Operation ........................................................................................................................................................................ 35
2
10.1. I C protocol ............................................................................................................................................................... 35
2
10.2. I C Timing Specification ............................................................................................................................................ 37
2
10.3. I C Device Address Modes ....................................................................................................................................... 38
Dimensions and Patterns ........................................................................................................................................................... 45
Additional Information ................................................................................................................................................................ 46
Revision History ......................................................................................................................................................................... 47
Rev 0.991
Page 3 of 47
www.sitime.com
SiT3521
1 to 340 MHz Elite™ I
2
C/SPI Programmable Oscillator
1 Electrical Characteristics
PRELIMINARY
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Frequency Stability
Symbol
f
F_stab
Min.
1
-10
-20
-25
-50
First Year Aging
Operating Temperature Range
F_1y
T_use
–
-20
-40
-40
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
Duty Cycle
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
VIH
VIL
Z_in
DC
T_start
T_oe_hw
70%
–
–
45
–
–
Typ.
–
–
–
–
–
±1
–
–
–
3.3
3.0
2.8
2.5
–
–
100
–
–
–
Max.
340
+10
+20
+25
+50
–
+70
+85
+105
Supply Voltage
3.63
3.3
3.08
2.75
–
30%
–
55
3.0
3.8
V
V
V
V
Vdd
Vdd
kΩ
%
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
OE pin
OE pin
OE pin, logic high or logic low
Unit
MHz
ppm
ppm
ppm
ppm
ppm
°C
°C
°C
1 -year aging at 25°C
Extended Commercial
Industrial
Extended Industrial. Available only for I C operation, not SPI.
2
st
Condition
Factory or user programmable, accurate to 6 decimal places
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations.
Frequency Range
Frequency Stability
Temperature Range
Input Characteristics – OE Pin
Output Characteristics
Startup and Output Enable/Disable Timing
T_oe_sw
–
–
6.5
µs
Rev 0.991
Page 4 of 47
www.sitime.com
SiT3521
1 to 340 MHz Elite™ I
2
C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
PRELIMINARY
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.15
–
89
58
–
32
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B.
T_jitt
–
0.225
0.1
0.225
0.11
1
0.340
0.14
0.340
0.15
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
80
61
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
400
455
50
1.375
50
470
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.1
0.21
0.1
1
0.275
0.12
0.367
0.12
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V
mV
mV
V
mV
ps
f = 156.25MHz See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
1. Introduction
In the previous article, we talked about playing music with Bluetooth speakers. However, before that, the audio files were transferred to the development board through the PC, and then...
MS5351M is a universal frequency synthesizer chip that can generate any clock output from 2.5kHz to 200MHz through I2C configuration. It can replace crystals, crystal oscillators, phase-locked loops, ...
I just saw the news that RTthread passed GJB7718-2012 and GJB7706-2012.
What are the advantages of these two military standards and other industry standards, such as medical certification IEC-62304 Cl...
[size=5][color=#000][b]The design idea is as follows: immediately judge the value of the battery backup area register when power is turned on. If it is equal, clear the register value and then upgrade...
Light-emitting diodes are semiconductor electronic components that can emit light. As a new type of efficient, environmentally friendly, green solid-state lighting source, they are rapidly and widely...[Details]
Just now! GalaxyCore's IPO on the Science and Technology Innovation Board was successfully approved On November 6, according to the results of the 98th review meeting of the Science and Technology In...[Details]
A signal generator is a device that can provide electrical signals of various frequencies, waveforms, and output levels. It is used as a test signal source or excitation source when measuring the amp...[Details]
Volatile literally means changeable and unstable.
When optimizing the code, the compiler may store frequently used code in the cache, and then directly read the cache instead of the memory the n...[Details]
With the development of electronic technology, cars have gradually become an extension of home entertainment and office environments. After entering the automotive electronics field, new integrated a...[Details]
Classification and characteristics of AC regulated power supply:
A power supply that can provide a stable voltage and frequency is called an AC stabilized power supply. At present, most domestic ma...[Details]
The biggest trump card that the US has in its fight against Huawei is electronic design automation (EDA) tools. Although the output value is not large, they play a key role. Currently, three major ma...[Details]
0 Overview
Frequency measurement is one of the most basic measurements in electronic measurement. With the development of electronic science and technology, the accuracy requirements for signal fre...[Details]
X10 Max is a large-screen phone launched by Honor today. In fact, Honor President Zhao Ming had revealed its news before, and today it finally met with users. It occupies the position of "the fi...[Details]
On November 30, the power grid load in Xianyang area hit a new high since the beginning of winter at 2,161,080 kilowatts, an increase of 12.34% over the same period last year, and the power grid op...[Details]
Back in May, we saw the debut of LG's Stylo 6 smartphone, and today we've seen a series of renders of its successor, the LG Stylo 7. The renders show a new design with a 6.8-inch display and a center...[Details]
The shortage of mature wafer foundry processes is becoming increasingly serious. Market sources say that quotations in the third quarter will be increased by as much as 30%, far higher than the marke...[Details]
The Russian-Ukrainian conflict has become a geopolitical crisis in Europe and has also posed an inevitable threat to the global supply chain of the automotive industry, especially e...[Details]
On November 7, 2024, Tailan New Energy and Changan Automobile jointly held a diaphragm-free solid-state lithium battery technology conference in Chongqing. The two parties jointly launched diaphrag...[Details]