D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
1N5817, 1N5818, 1N5819
1N5817 and 1N5819 are Preferred Devices
Axial Lead Rectifiers
This series employs the Schottky Barrier principle in a large area
metal−to−silicon power diode. State−of−the−art geometry features
chrome barrier metal, epitaxial construction with oxide passivation
and metal overlap contact. Ideally suited for use as rectifiers in
low−voltage, high−frequency inverters, free wheeling diodes, and
polarity protection diodes.
Features
http://onsemi.com
•
•
•
•
Extremely Low V
F
Low Stored Charge, Majority Carrier Conduction
Low Power Loss/High Efficiency
These are Pb−Free Devices*
SCHOTTKY BARRIER
RECTIFIERS
1.0 AMPERE
20, 30 and 40 VOLTS
Mechanical Characteristics:
•
Case: Epoxy, Molded
•
Weight: 0.4 Gram (Approximately)
•
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
•
Lead Temperature for Soldering Purposes:
260°C Max for 10 Seconds
•
Polarity: Cathode Indicated by Polarity Band
•
ESD Ratings: Machine Model = C (>400 V)
Human Body Model = 3B (>8000 V)
AXIAL LEAD
CASE 59
STYLE 1
MARKING DIAGRAM
A
1N581x
YYWWG
G
A
=Assembly Location
1N581x =Device Number
x= 7, 8, or 9
YY
=Year
WW
=Work Week
G
=Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information on page 6 of
this data sheet.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
©
Semiconductor Components Industries, LLC, 2006
Preferred
devices are recommended choices for future use
and best overall value.
1
July, 2006 − Rev. 10
Publication Order Number:
1N5817/D
1N5817, 1N5818, 1N5819
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Non−Repetitive Peak Reverse Voltage
RMS Reverse Voltage
Average Rectified Forward Current (Note 1), (V
R(equiv)
≤
0.2 V
R
(dc), T
L
= 90°C,
R
qJA
= 80°C/W, P.C. Board Mounting, see Note 2, T
A
= 55°C)
Ambient Temperature (Rated V
R
(dc), P
F(AV)
= 0, R
qJA
= 80°C/W)
Non−Repetitive Peak Surge Current, (Surge applied at rated load conditions,
half−wave, single phase 60 Hz, T
L
= 70°C)
Operating and Storage Junction Temperature Range (Reverse Voltage applied)
Peak Operating Junction Temperature (Forward Current applied)
Symbol
V
RRM
V
RWM
V
R
V
RSM
V
R(RMS)
I
O
T
A
I
FSM
T
J
, T
stg
T
J(pk)
85
1N5817
20
1N5818
30
1N5819
40
Unit
V
24
14
36
21
1.0
80
25 (for one cycle)
−65 to +125
150
48
28
V
V
A
75
°C
A
°C
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
THERMAL CHARACTERISTICS
(Note 1)
Characteristic
Thermal Resistance, Junction−to−Ambient
Symbol
R
qJA
Max
80
Unit
°C/W
ELECTRICAL CHARACTERISTICS
(T
L
= 25°C unless otherwise noted) (Note 1)
Characteristic
Maximum Instantaneous Forward Voltage (Note 2)
(i
F
= 0.1 A)
(i
F
= 1.0 A)
(i
F
= 3.0 A)
Symbol
v
F
1N5817
0.32
0.45
0.75
1.0
10
1N5818
0.33
0.55
0.875
1.0
10
1N5819
0.34
0.6
0.9
1.0
10
Unit
V
Maximum Instantaneous Reverse Current @ Rated dc Voltage (Note 2)
(T
L
= 25°C)
(T
L
= 100°C)
1. Lead Temperature reference is cathode lead 1/32 in from case.
2. Pulse Test: Pulse Width = 300
ms,
Duty Cycle = 2.0%.
I
R
mA
http://onsemi.com
2
1N5817, 1N5818, 1N5819
NOTE 3. — DETERMINING MAXIMUM RATINGS
125
TR, REFERENCE TEMPERATURE ( C)
Reverse power dissipation and the possibility of thermal
runaway must be considered when operating this rectifier at
reverse voltages above 0.1 V
RWM
. Proper derating may be
accomplished by use of equation (1).
(1)
T
A(max)
= T
J(max)
− R
qJA
P
F(AV)
− R
qJA
P
R(AV)
where T
A(max)
= Maximum allowable ambient temperature
T
J(max)
= Maximum allowable junction temperature
(125°C or the temperature at which thermal
runaway occurs, whichever is lowest)
P
F(AV)
= Average forward power dissipation
P
R(AV)
= Average reverse power dissipation
R
qJA
= Junction−to−ambient thermal resistance
40
30
23
°
115
105
95
R
qJA
(°C/W) = 110
80
60
85
75
Figures 1, 2, and 3 permit easier use of equation (1) by
taking reverse power dissipation and thermal runaway into
consideration. The figures solve for a reference temperature
as determined by equation (2).
T
R
= T
J(max)
− R
qJA
P
R(AV)
(2)
TR, REFERENCE TEMPERATURE ( C)
2.0
3.0
4.0 5.0
7.0
10
V
R
, DC REVERSE VOLTAGE (VOLTS)
15
20
Figure 1. Maximum Reference Temperature
1N5817
125
°
40
115
30
23
Substituting equation (2) into equation (1) yields:
T
A(max)
= T
R
− R
qJA
P
F(AV)
(3)
Inspection of equations (2) and (3) reveals that T
R
is the
ambient temperature at which thermal runaway occurs or
where T
J
= 125°C, when forward power is zero. The
transition from one boundary condition to the other is
evident on the curves of Figures 1, 2, and 3 as a difference
in the rate of change of the slope in the vicinity of 115°C. The
data of Figures 1, 2, and 3 is based upon dc conditions. For
use in common rectifier circuits, Table 1 indicates suggested
factors for an equivalent dc voltage to use for conservative
design, that is:
V
R(equiv)
= V
in(PK)
x F
(4)
105
95
R
qJA
(°C/W) = 110
80
60
85
75
3.0
4.0
TR, REFERENCE TEMPERATURE ( C)
The factor F is derived by considering the properties of the
various rectifier circuits and the reverse characteristics of
Schottky diodes.
EXAMPLE: Find T
A(max)
for 1N5818 operated in a
12−volt dc supply using a bridge circuit with capacitive filter
such that I
DC
= 0.4 A (I
F(AV)
= 0.5 A), I
(FM)
/I
(AV)
= 10, Input
Voltage = 10 V
(rms)
, R
qJA
= 80°C/W.
Step 1. Find V
R(equiv)
. Read F = 0.65 from Table 1,
Step 1. Find
∴
V
R(equiv)
= (1.41)(10)(0.65) = 9.2 V.
Step 2. Find T
R
from Figure 2. Read T
R
= 109°C
Step 1. Find
@ V
R
= 9.2 V and R
qJA
= 80°C/W.
Step 3. Find P
F(AV)
from Figure 4. **Read P
F(AV)
= 0.5 W
I
(FM)
@
= 10 and IF(AV) = 0.5 A.
I
(AV)
Step 4. Find T
A(max)
from equation (3).
Step 4. Find
T
A(max)
= 109 − (80) (0.5) = 69°C.
**Values given are for the 1N5818. Power is slightly lower for the
1N5817 because of its lower forward voltage, and higher for the
1N5819.
5.0
7.0
10
15
20
V
R
, DC REVERSE VOLTAGE (VOLTS)
30
Figure 2. Maximum Reference Temperature
1N5818
125
°
115
40
30
23
105
95
R
qJA
(°C/W) = 110
80
60
85
75
4.0
5.0
7.0
10
15
20
V
R
, DC REVERSE VOLTAGE (VOLTS)
30
40
Figure 3. Maximum Reference Temperature
1N5819
Table 1. Values for Factor F
Circuit
Load
Sine Wave
Square Wave
Half Wave
Resistive
0.5
0.75
Capacitive*
1.3
Full Wave, Bridge
Resistive
0.5
Capacitive
0.65
Full Wave, Center Tapped* †
Resistive
1.0
1.5
Capacitive
1.3
1.5
**Note that V
R(PK)
≈
2.0 V
in(PK)
.
1.5
0.75
0.75
†Use line to center tap voltage for V
in
.
http://onsemi.com
3
1N5817, 1N5818, 1N5819
R
θ
JL THERMAL RESISTANCE, JUNCTION−TO−LEAD ( C/W)
,
°
PF(AV), AVERAGE POWER DISSIPATION (WATTS)
90
80
70
60
MAXIMUM
TYPICAL
BOTH LEADS TO HEATSINK,
EQUAL LENGTH
5.0
3.0
2.0
Sine Wave
I
(FM) =
π
(Resistive Load)
I
(AV)
50
40
30
Capacitive
1.0
Loads
0.7
0.5
0.3
0.2
0.1
0.07
0.05
{
5
10
20
T
J
≈
125°C
dc
SQUARE WAVE
20
10
1
1/8
1/4
3/8
1/2
5/8
3/4
7/8
1.0
0.2
L, LEAD LENGTH (INCHES)
0.4
0.6 0.8 1.0
2.0
I
F(AV)
, AVERAGE FORWARD CURRENT (AMP)
4.0
Figure 4. Steady−State Thermal Resistance
Figure 5. Forward Power Dissipation
1N5817−19
r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED)
1.0
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02
0.01
0.1
0.2
0.5
1.0
2.0
5.0
10
20
t, TIME (ms)
50
100
200
500
1.0k
2.0k
5.0k
10k
Z
qJL(t)
= Z
qJL
•
r(t)
t
p
P
pk
t
1
P
pk
TIME
DUTY CYCLE, D = t
p
/t
1
PEAK POWER, P
pk
, is peak of
an
equivalent square power pulse.
DT
JL
= P
pk
•
R
qJL
[D + (1 − D)
•
r(t
1
+ t
p
) + r(t
p
) − r(t
1
)] where
DT
JL
= the increase in junction temperature above the lead temperature
r(t) = normalized value of transient thermal resistance at time, t, from Figure 6,
i.e.:
r(t) =
r(t
1
+ t
p
) = normalized value of transient thermal resistance at time, t
1
+ t
p
.
Figure 6. Thermal Response
NOTE 4. — MOUNTING DATA
Mounting Method 1
P.C. Board with
1−1/2″ x 1−1/2″
copper surface.
Mounting Method 3
P.C. Board with
1−1/2″ x 1−1/2″
copper surface.
Data shown for thermal resistance, junction−to−ambient
(R
qJA
) for the mountings shown is to be used as typical guide-
line values for preliminary engineering, or in case the tie
point temperature cannot be measured.
TYPICAL VALUES FOR R
qJA
IN STILL AIR
Mounting
Method
1
L = 3/8″
L
L
Lead Length, L (in)
1/8
52
67
1/4
65
80
50
1/2
72
87
3/4
85
100
R
qJA
°C/W
°C/W
°C/W
L
L
VECTOR PIN MOUNTING
Mounting Method 2
BOARD GROUND
PLANE
2
3
http://onsemi.com
4