EEWORLDEEWORLDEEWORLD

Part Number

Search

C330C331KDR5TA7301

Description
Ceramic Capacitor, Multilayer, Ceramic, 1000V, 10% +Tol, 10% -Tol, X7R, 15% TC, 0.00033uF, Through Hole Mount, 3025, RADIAL LEADED
CategoryPassive components    capacitor   
File Size965KB,16 Pages
ManufacturerKEMET
Websitehttp://www.kemet.com
Environmental Compliance  
Download Datasheet Parametric View All

C330C331KDR5TA7301 Overview

Ceramic Capacitor, Multilayer, Ceramic, 1000V, 10% +Tol, 10% -Tol, X7R, 15% TC, 0.00033uF, Through Hole Mount, 3025, RADIAL LEADED

C330C331KDR5TA7301 Parametric

Parameter NameAttribute value
Is it lead-free?Lead free
Is it Rohs certified?conform to
MakerKEMET
package instruction, 3025
Reach Compliance Codecompliant
ECCN codeEAR99
capacitance0.00033 µF
Capacitor typeCERAMIC CAPACITOR
dielectric materialsCERAMIC
high9.14 mm
JESD-609 codee3
length7.62 mm
Installation featuresTHROUGH HOLE MOUNT
multi-layerYes
negative tolerance10%
Number of terminals2
Maximum operating temperature125 °C
Minimum operating temperature-55 °C
Package shapeRECTANGULAR PACKAGE
Package formRadial
method of packingBULK
positive tolerance10%
Rated (DC) voltage (URdc)1000 V
size code3025
surface mountNO
Temperature characteristic codeX7R
Temperature Coefficient15% ppm/°C
Terminal surfaceMatte Tin (Sn) - with Nickel (Ni) barrier
Terminal pitch5.08 mm
Terminal shapeWIRE
width6.35 mm
MULTILAYER CERAMIC CAPACITORS/AXIAL
& RADIAL LEADED
Multilayer ceramic capacitors are available in a
variety of physical sizes and configurations, including
leaded devices and surface mounted chips. Leaded
styles include molded and conformally coated parts
with axial and radial leads. However, the basic
capacitor element is similar for all styles. It is called a
chip and consists of formulated dielectric materials
which have been cast into thin layers, interspersed
with metal electrodes alternately exposed on opposite
edges of the laminated structure. The entire structure is
fired at high temperature to produce a monolithic
block which provides high capacitance values in a
small physical volume. After firing, conductive
terminations are applied to opposite ends of the chip to
make contact with the exposed electrodes.
Termination materials and methods vary depending on
the intended use.
TEMPERATURE CHARACTERISTICS
Ceramic dielectric materials can be formulated with
Class III:
General purpose capacitors, suitable
a wide range of characteristics. The EIA standard for
for by-pass coupling or other applications in which
ceramic dielectric capacitors (RS-198) divides ceramic
dielectric losses, high insulation resistance and
dielectrics into the following classes:
stability of capacitance characteristics are of little or
no importance. Class III capacitors are similar to Class
Class I:
Temperature compensating capacitors,
II capacitors except for temperature characteristics,
suitable for resonant circuit application or other appli-
which are greater than ± 15%. Class III capacitors
cations where high Q and stability of capacitance char-
have the highest volumetric efficiency and poorest
acteristics are required. Class I capacitors have
stability of any type.
predictable temperature coefficients and are not
affected by voltage, frequency or time. They are made
KEMET leaded ceramic capacitors are offered in
from materials which are not ferro-electric, yielding
the three most popular temperature characteristics:
superior stability but low volumetric efficiency. Class I
C0G:
Class I, with a temperature coefficient of 0 ±
capacitors are the most stable type available, but have
30 ppm per degree C over an operating
the lowest volumetric efficiency.
temperature range of - 55°C to + 125°C (Also
known as “NP0”).
Class II:
Stable capacitors, suitable for bypass
X7R:
Class II, with a maximum capacitance
or coupling applications or frequency discriminating
change of ± 15% over an operating temperature
circuits where Q and stability of capacitance char-
range of - 55°C to + 125°C.
acteristics are not of major importance. Class II
Z5U:
Class III, with a maximum capacitance
capacitors have temperature characteristics of ± 15%
change of + 22% - 56% over an operating tem-
or less. They are made from materials which are
perature range of + 10°C to + 85°C.
ferro-electric, yielding higher volumetric efficiency but
less stability. Class II capacitors are affected by
Specified electrical limits for these three temperature
temperature, voltage, frequency and time.
characteristics are shown in Table 1.
SPECIFIED ELECTRICAL LIMITS
Parameter
Dissipation Factor: Measured at following conditions.
C0G – 1 kHz and 1 vrms if capacitance >1000pF
1 MHz and 1 vrms if capacitance 1000 pF
X7R – 1 kHz and 1 vrms* or if extended cap range 0.5 vrms
Z5U – 1 kHz and 0.5 vrms
Dielectric Stength: 2.5 times rated DC voltage.
Insulation Resistance (IR): At rated DC voltage,
whichever of the two is smaller
Temperature Characteristics: Range, °C
Capacitance Change without
DC voltage
* MHz and 1 vrms if capacitance
100 pF on military product.
Temperature Characteristics
C0G
X7R
2.5%
(3.5% @ 25V)
Z5U
0.10%
4.0%
Pass Subsequent IR Test
1,000 M
F
or 100 G
-55 to +125
0 ± 30 ppm/°C
1,000 M
F
or 100 G
-55 to +125
± 15%
1,000 M
or 10 G
F
+ 10 to +85
+22%,-56%
Table I
4
© KEMET Electronics Corporation, P.O. Box 5928, Greenville, S.C. 29606, (864) 963-6300
MCU serial communication program help
I just learned about timers and serial ports. The project requires that after pressing key1, the LED lights will turn on for 5 seconds and then turn off (timer timing), then when the serial port recei...
An_Ran 51mcu
When the TL5708 development board does not have a router, connect the PC and the development board with a network cable and place them in the same network segment to transfer files between them.
[i=s]This post was last edited by bqgup on 2021-3-16 20:44[/i] # When there is no router on the TL5708 development board, connect the PC and the development board with a network cable and place them i...
bqgup Innovation Lab
[Mil MYC-JX8MPQ Review] + Improve the sht20 reading on the QT side
I have used this sensor before when evaluating Mir MP157. Today I will continue to use this sensor to test our IMX8, and also record some problems in the process.According to the board description, we...
流行科技 Special Edition for Assessment Centres
What does DIN VDE V 0884-11:2017-01 mean for digital isolator certification?
In January 2020 , the German Institute for Standardization ( DIN) and the Association of German Electrical Engineers (VDE) V0884-10: 2006-12 is no longer a valid certification standard for evaluating ...
qwqwqw2088 Analogue and Mixed Signal
Do CAN and LIN in automotive BCM and ECU need to be isolated? Do switching quantities need to be isolated? How to design grounding?
I just started working in the automotive electronics industry and I don't know the rules of this industry. I would like to ask the experts in this field to help me clear my ignorance. Thank you! In ad...
bingo888 Automotive Electronics
Let's take a look at how UWB compares to other standards
Recently, in the exploration of ultra-wideband (UWB) technology (part 1), UWB was compared with other standards. Let's take a look.There are many factors to consider when designing an indoor positioni...
alan000345 RF/Wirelessly

Technical ResourceMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号