EMCORE’s Model 1935 DFB lasers offer a low cost solution for linear fiber optic
links. These components can be cooled with external thermo-electric coolers for
high stability, or run without TEC’s to reduce power consumption. The DFB laser
builds upon Ortel’s long history of high performance, leading edge designs in
CATV, wireless, and high speed digital applications. The laser diode devices are
packaged in a compact hermetic assembly together with monitor photodiode and
isolator, for flexible integration into various transmitter configurations.
Performance Highlights
Parameters
Min
-40
3
5
Optical Output Power
(1)
Typical
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Max
85
4.9
5.9
8.9
9.9
11.9
4000
-
-57
-60
-65
-68
-
-
Units
C
Applications
Video Signal Distribution in HFC and
FTTx Nodes
Signal Distribution in L-Band and
Wireless Remoting Links
High Linearity, Low Power Fiber Links
Operating Case Temperature Range
6
9
10
dBm
Frequency Range
Carrier-to-Noise Ratio (79 channels)
(1)
(1)
5
51
-
-
-
-
45
(1)
MHz
dB
dBc
Features
Linear DFB Laser Design
Ouput Power Up to 10 dBm Available
Bandwidth 47 – 1002 MHz
RoHS Compliance
Optical Isolator
Low Power Consumption
Monitor Photodiode
Composite Second Order (79 channels)
Standard Linearity
Enhanced Linearity
Composite Triple Beat (79 channels)
(1)
Standard Linearity
Enhanced Linearity
Optical Return Loss
(1)
dBc
dB
dB
Side Mode Suppression Ratio, CW
30
1. Performance at Tcase = 25°C
| REV 2012.08
Information contained herein is deemed reliable and accurate as of the issue date. EMCORE reserves the right to change the design or specification at any time without notice.
1935 F/R/W Coaxial DFB Laser Diode
O-Band CWDM 5 MHz – 4000 MHz
DATASHEET | AUGUST 2012
FIBER OPTICS
Absolute Maximum Ratings
1
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress
ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the
operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect
device reliability.
Parameters
Storage Temperature
Operating Case Temperature
Laser Diode Forward Current
Laser Diode Reverse Voltage
Photodiode Forward Current
Photodiode Reverse Voltage
Average RF Input Power
Lead Soldering Temperature/Time
Relative Humidity
ESD
Symbol
T
STG
T
OP
I
OP
V
R
I
MPD
V
MPD,R
PIN
-
RH
-
Condition/Notes
Non-Operating
Continuous
CW
Continuous
Continuous
Continuous
60 Seconds
-
Continuous
Human Body Model
Min
-40
-40
-
-
-
-
-
-
-
-500
Max
85
85
150
1.0
2
10
62
260/10
85
+500
Unit
o
o
C
C
mA
V
mA
V
dBmV
o
C/sec
%
V
1. Absolute maximum data are limited to system design only; proper device performance is not guaranteed over rating
listed above. Operation beyond these maximum conditions may degrade device performance, lead to device failure,
shorter lifetime, and will invalidate the device warranty.
Electrical/Optical Characteristics
Parameters
Optical Output Power
Symbol
Conditions/Notes
3 dBm Version
5 dBm Version
6 dBm Version
9 dBm Version
10 dBm Version
T
case
= 25ºC
T
case
= 45ºC
Min
3
5
6
9
10
-
-
-
Typ
-
-
-
-
-
8
13
-
1.17
-
-
4
-
-
-
Max
4.9
5.9
8.9
9.9
11.9
15
20
80
1.8
0.3
1.2
8
2000
50
-150
Unit
P
O
dBm
Threshold Current
Laser Bias Current
Forward Voltage
Slope Efficiency
Thermal Slope Efficiency
Laser Input Impedance
MPD Current
MPD Dark Current
Relative Intensity Noise
I
TH
I
OP
V
F
SE
TSE
Z
I
MPD
I
D
RIN
mA
mA
V
mW/mA
-
A
nA
dB/Hz
I
op
T
case
= 25ºC, I
op
SE(Tc)/SE(25ºC)
T
case
= -20ºC to 85ºC
-
V
MPD
= 5V, I
op
V
MPD
= 5V, I
op
= 0
T
case
= 25ºC
CW, I
op
,
T
case
= 25ºC
5 MHz - 1002 MHz
-
0.07
0.4
2
50
-
-
| REV 2012.08
Information contained herein is deemed reliable and accurate as of the issue date. EMCORE reserves the right to change the design or specification at any time without notice.
1935 F/R/W Coaxial DFB Laser Diode
O-Band CWDM 5 MHz – 4000 MHz
DATASHEET | AUGUST 2012
FIBER OPTICS
Electrical/Optical Characteristics
(continued)
Parameters
Tracking Error
Optical Isolation, T
case
= 25ºC
Spectral Width (-20 dB)
Side Mode Suppression Ratio
Optical Return Loss
Symbol
ΔPf
ISO
SMSR
ORL
Conditions/Notes
I
MON
= const
ER = 10log(P
O
/2.0) [dB]
Double Isolator
I
op
I
op
T
case
= 25ºC
Min
-1
45
-
30
35
Typ
-
-
0.1
45
-
Max
+1
-
1.0
-
-
Unit
dB
dB
nm
dB
dB
1. Referenced to base of TO header.
Forward Path RF Characteristics
1935F Performance Parameter
Frequency Response Flatness
Response Up-tilt
1
2,3,4
2,3,4
1
Symbol
|S
21
|
Conditions/Notes
47 MHz – 1002 MHz
5 MHz – 4000 MHz
47 MHz < f < 1002 MHz
Min
-
-
-1
51
-
-
-
-
Typ
-
-
Max
1
4
3
Unit
dB
p-p
dB
dB
dBc
Carrier-to-Noise Ratio
CNR
Standard Linearity
Enhanced Linearity
CSO
I
op
I
op
T
case
= 25ºC
I
op
T
case
= 25ºC
-
-
-
-
-
-
-57
-60
-65
-68
Composite Second Order
Composite Triple Beat
2,3,4
Standard Linearity
Enhanced Linearity
CTB
dBc
1. I
op
, T
case
= 25C. Test with the laser Input pin matched to a 50 system.
2. 3.7% OMI, 79 NTSC unmodulated carriers (50 MHz to 550 MHz). 10 km fiber.
3. Received power = 0 dBm.
4. I
op
, T
case
= 25C. Test with the laser Input pin matched to a 75 system.
Return Path RF Characteristics
1935R Performance Parameters
Frequency Response Flatness
Second Order Distortion
Standard Linearity
Enhanced Linearity
2
2
1
Symbol
|S
21
|
Conditions/Notes
5 MHz - 200 MHz
P
F
= 3 dBm, OMI = 10% each
2-tone test: f1=7MHz, f2=56MHz
20 km of fiber
(7.5 dB total loss with connector) f1 + f2
P
F
= 3 dBm, OMI = 10% each
2-tone test: f1=7MHz, f2=56MHz
20 km of fiber
(7.5 dB total loss with connector) 2f2-f1
Min
-
Typ
-
Max
1
Unit
dB
p-p
DSO
-
-
-
-
-52
-58
dBc
Third Order Distortion
Standard Linearity
Enhanced Linearity
DTB
-
-
-
-
-63
-65
dBc
1. I
op
, T
case
= 25C. Test with the laser Input pin matched to a 50 system.
2. I
op
, T
case
= 25C. Test with laser input pin matched to a 75 system.
| REV 2012.08
Information contained herein is deemed reliable and accurate as of the issue date. EMCORE reserves the right to change the design or specification at any time without notice.
1935 F/R/W Coaxial DFB Laser Diode
O-Band CWDM 5 MHz – 4000 MHz
DATASHEET | AUGUST 2012
FIBER OPTICS
Wide Bandwidth Path RF Characteristics
1935W Performance Parameters
Frequency Response Flatness
Input Third Order Intercept
1dB Compression Point
3
2
1
Symbol
|S
21
|
IIP3
P
1dB
Conditions/Notes
900 MHz – 4000 MHz
Standard Linearity, I
bb
I
bb
Min
-
30
16
Typ
-
-
-
Max
4
-
-
Unit
dB
p-p
dBm
dBm
1. I
op
, T
case
= 25C. Test with the laser Input pin matched to a 50 system.
2. IIP3 is measured at I
bb
where I
bb
is the bias point at which simultaneously the laser at its best linearity and the optical
power is within specification. Test Frequency F1 = 2700MHz, F2 = 2703MHz, RF in = 0dBm/frequency. 0km fiber.
3. Test at 2700MHz. 0km fiber.
Package Outline Drawing (dimensions are in mm)
Mounting Bracket
| REV 2012.08
Information contained herein is deemed reliable and accurate as of the issue date. EMCORE reserves the right to change the design or specification at any time without notice.
1935 F/R/W Coaxial DFB Laser Diode
O-Band CWDM 5 MHz – 4000 MHz
DATASHEET | AUGUST 2012
FIBER OPTICS
Reliability/Quality
Designed to meet qualification requirements of Telcordia
TM
(Bellcore) GR-468-CORE.
Schematic and Pinout
Schematic and Pinout A
3
PD
4
2
LD
1
Pin Definitions for Pinout A
Pin
1
2
3
4
Description
LD Anode, Case Ground
LD Cathode
PD Cathode
PD Anode
Pinout A
Bottom View
Laser Safety
This product meets the appropriate standard in Title 21 of the Code of Federal Regulations (CFR). FDA/CDRH Class 1 laser
product. This device has been classified with the FDA/CDRH under accession number 0220191.
All version of this laser are Class 1 laser product, tested according to IEC 60825-1:2007/EN 60825-1:2007
Single-mode fiber pigtail with SC/APC connectors (standard).
Wavelength = 1.3
m.
Maximum power = 50 mW.
Because of size constraints, laser safety labeling (including an FDA class 1 label) is not affixed to the module, but attached
to the outside of the shipping carton. Product is not shipped with power supply.
Caution: Use of controls, adjustments and procedures other than those specified herein may result in hazardous
laser radiation exposure.
| REV 2012.08
Information contained herein is deemed reliable and accurate as of the issue date. EMCORE reserves the right to change the design or specification at any time without notice.
A low frequency card T5577 and its card reader, as shown belowNow I have two problems
1. When the card is placed against the card reader, the operation direction must be swiped horizontally from right...
I want to make a completely open source charger. Open source hardware and code. Leave questions for everyone to solve together.Xianming: My skills are average, and there are many experts here. Please ...
As the domestic epidemic situation stabilizes, I believe that many netizens have had a pleasant "face-to-face" meeting with EEWorld partners in Shenzhen and Shanghai in September.
Are Beijing netizens...
[i=s]This post was last edited by FreeTest on 2019-9-16 15:45[/i]This content is originally created by FreeTest, a user of EEWORLD forum. If you want to reprint or use it for commercial purposes, you ...
Molex, a leading global provider of connectivity and electronic solutions, today announced the results of a global survey of Industry 4.0 manufacturing stakeholders driving advancements in robotics, ...[Details]
Recently, Miao Wei, Minister of Industry and Information Technology, said at a press conference, "The networks currently being promoted in various places are basically NSA 5G applications, and SA 5G ...[Details]
Recently, according to relevant media reports, the advanced chip packaging and testing factory that Foxconn plans to build in Qingdao has broken ground recently, which has attracted widespread attent...[Details]
Abstract: This paper proposes a design and implementation method of multi-thread communication based on TCP/IP protocol under Windows NT. On this basis, an application example of multi-thread c...[Details]
OPPO announced that the Fengshen flagship Find X7 series, which will be released on January 8, will be equipped with the world's first dual periscope imaging technology, leading mobile imaging into t...[Details]
With the increasing demand for clean energy, fuel
cell
engines and their applications in
automotive power systems
are becoming increasingly important. Fuel cells directly convert is...[Details]
This device allows a seamless connection between living things and machines. The reporter learned from the Institute of Physics and Chemistry Technology of the Chinese Academy of Sciences on the 26th...[Details]
In the first half of this year, affected by the overall economic downturn, global smartphone shipments declined significantly. This effect was also transmitted to the upstream panel industry, resulti...[Details]
According to information provided by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, heat dissipation is one of the most important factors in successfully designin...[Details]
Well-known digital blogger @摩卡 revealed the news about Xiaomi Watch. He said: "Xiaomi's watch is finally coming soon, Mi fans don't worry, it is expected to be released in October, Qualcomm Snapdrago...[Details]
Introduction to JLink Emulator J-Link is a JTAG emulator launched by SEGGER to support the simulation of ARM core chips. It supports the simulation of all ARM7/ARM9/ARM11, Cortex M0/M1/M3/M4, Cor...[Details]
Today, Honor launched three new MagicBook notebooks at its new product launch conference, namely Honor MagicBook 14 Ryzen Edition, MagicBook 15 Ryzen Edition, and MagicBook Pro Ryzen Edition, with a ...[Details]
1. Hibernation operation Just execute asm("SLEEP"); or SLEEP; 2 GPIO status after sleep Keep GPIO status after sleep 3 Where does the program start executing after waking up? Generally, MCL...[Details]
How can a C language platform designed to reduce structural exploration time achieve structural breakthroughs with new thinking?
In the past, semiconductor companies mostly used FPGA (Fiel...[Details]
The on state of mode B is shown in Figure (a): switch S2 is closed, switch S1 and diodes D1 and D2 are not conducting. At this time, under the action of voltage V2, the current iL2 of inductor L2 inc...[Details]