PD - 94725
Applications
l
High Frequency Synchronous Buck
Converters for Computer Processor Power
l
High Frequency Isolated DC-DC
Converters with Synchronous Rectification
for Telecom and Industrial Use
Benefits
l
Very Low R
DS(on)
at 4.5V V
GS
l
Ultra-Low Gate Impedance
l
Fully Characterized Avalanche Voltage
and Current
HEXFET
®
Power MOSFET
IRFR3704Z
IRFU3704Z
Qg
9.3nC
8.4m
:
V
DSS
R
DS(on)
max
20V
D-Pak
IRFR3704Z
I-Pak
IRFU3704Z
Absolute Maximum Ratings
Parameter
V
DS
V
GS
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
P
D
@T
C
= 100°C
T
J
T
STG
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Max.
20
± 20
Units
V
A
f
42
f
60
240
48
24
0.32
Maximum Power Dissipation
Maximum Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
W
-55 to + 175
300 (1.6mm from case)
W/°C
°C
Thermal Resistance
Parameter
R
θJC
R
θJA
R
θJA
Junction-to-Case
Junction-to-Ambient (PCB Mount)
Junction-to-Ambient
Typ.
Max.
3.1
50
110
Units
°C/W
gÃ
–––
–––
–––
www.kersemi.com
1
07/10/03
IRFR/U3704Z
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
DSS
∆ΒV
DSS
/∆T
J
R
DS(on)
V
GS(th)
∆V
GS(th)
/∆T
J
I
DSS
I
GSS
gfs
Q
g
Q
gs1
Q
gs2
Q
gd
Q
godr
Q
sw
Q
oss
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Q
gs2
+ Q
gd
)
Output Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min. Typ. Max. Units
20
–––
–––
–––
1.65
–––
–––
–––
–––
–––
41
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
0.015
6.7
9.2
2.1
-5.5
–––
–––
–––
–––
–––
9.3
3.0
1.1
2.7
2.5
3.8
5.6
41
8.9
4.9
12
1190
380
170
–––
–––
8.4
11.4
2.55
–––
1.0
150
100
-100
–––
14
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
pF
V
GS
= 0V
V
DS
= 10V
ns
nC
nC
V
DS
= 10V
V
GS
= 4.5V
I
D
= 12A
S
nA
V
mV/°C
µA
V
Conditions
V
GS
= 0V, I
D
= 250µA
V/°C Reference to 25°C, I
D
= 1mA
mΩ V
GS
= 10V, I
D
= 15A
V
GS
= 4.5V, I
D
e
= 12A
e
V
DS
= V
GS
, I
D
= 250µA
V
DS
=16V, V
GS
= 0V
V
DS
= 16V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
V
DS
= 10V, I
D
= 12A
See Fig. 16
V
DS
= 10V, V
GS
= 0V
V
DD
= 10V, V
GS
= 4.5V
I
D
= 12A
Clamped Inductive Load
e
ƒ = 1.0MHz
Avalanche Characteristics
E
AS
I
AR
E
AR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
Ã
d
Typ.
–––
–––
–––
Max.
41
12
4.8
Units
mJ
A
mJ
Repetitive Avalanche Energy
–––
–––
–––
–––
–––
–––
–––
–––
13
4.2
Diode Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Min. Typ. Max. Units
60
f
Conditions
MOSFET symbol
D
A
240
1.0
19
6.3
V
ns
nC
Ã
showing the
integral reverse
G
S
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
p-n junction diode.
T
J
= 25°C, I
S
= 12A, V
GS
= 0V
T
J
= 25°C, I
F
= 12A, V
DD
= 10V
di/dt = 100A/µs
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.kersemi.com
IRFR/U3704Z
1000
TOP
VGS
10V
6.0V
4.5V
4.0V
3.3V
2.8V
2.6V
2.4V
1000
TOP
VGS
10V
6.0V
4.5V
4.0V
3.3V
2.8V
2.6V
2.4V
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
100
100
10
BOTTOM
10
BOTTOM
1
2.4V
1
0.1
2.4V
0.01
0.1
20µs PULSE WIDTH
Tj = 25°C
0.001
0.01
0.1
1
10
0.01
0.01
0.1
20µs PULSE WIDTH
Tj = 175°C
1
10
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
1000
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current
(Α)
100
T J = 175°C
ID = 30A
VGS = 10V
1.5
10
1
T J = 25°C
0.1
1.0
VDS = 10V
20µs PULSE WIDTH
0.01
2
3
4
5
6
7
8
9
0.5
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
VGS, Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
vs. Temperature
www.kersemi.com
3
IRFR/U3704Z
10000
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
6.0
ID= 12A
VGS, Gate-to-Source Voltage (V)
5.0
VDS= 18V
VDS= 10V
C, Capacitance(pF)
4.0
1000
Ciss
3.0
Coss
2.0
Crss
100
1
10
100
1.0
0.0
0
2
4
6
8
10
12
14
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5.
Typical Capacitance vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge vs.
Gate-to-Source Voltage
1000.00
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100.00
T J = 175°C
10.00
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
1.00
T J = 25°C
10
Tc = 25°C
Tj = 175°C
Single Pulse
1
0
1
10
100µsec
1msec
10msec
100
VGS = 0V
0.10
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
VSD, Source-to-Drain Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.kersemi.com
IRFR/U3704Z
60
Limited By Package
2.5
50
ID, Drain Current (A)
VGS(th) Gate threshold Voltage (V)
2.0
40
30
1.5
ID = 250µA
20
1.0
10
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
0.5
-75 -50 -25
0
25
50
75 100 125 150 175 200
T J , Temperature ( °C )
Fig 9.
Maximum Drain Current vs.
Case Temperature
Fig 10.
Threshold Voltage vs. Temperature
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
0.05
0.1
R
1
R
1
τ
J
τ
1
τ
2
R
2
R
2
R
3
R
3
τ
3
R
4
R
4
τ
C
τ
τ
2
τ
3
τ
4
τ
4
Ri (°C/W)
0.8190
1.6018
0.6592
0.0418
τi
(sec)
0.000092
0.000698
0.009033
0.046618
0.02
0.01
SINGLE PULSE
( THERMAL RESPONSE )
τ
J
τ
1
0.01
Ci=
τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.kersemi.com
5