D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
a
FEATURES
AC PERFORMANCE
Gain Bandwidth Product: 80 MHz (Gain = 2)
Fast Settling: 100 ns to 0.01% for a 10 V Step
Slew Rate: 375 V/ s
Stable at Gains of 2 or Greater
Full Power Bandwidth: 6.0 MHz for 20 V p-p
DC PERFORMANCE
Input Offset Voltage: 1 mV max
Input Offset Drift: 14 V/ C
Input Voltage Noise: 9 nV/√Hz typ
Open-Loop Gain: 90 V/mV into a 500 Load
Output Current: 100 mA min
Quiescent Supply Current: 14 mA max
APPLICATIONS
Line Drivers
DAC and ADC Buffers
Video and Pulse Amplifiers
Available in Plastic DIP, Hermetic Metal Can,
Hermetic Cerdip, SOIC and LCC Packages and in
Chip Form
MIL-STD-883B Parts Available
Available in Tape and Reel in Accordance with
EIA-481A Standard
PRODUCT DESCRIPTION
Wideband, High Output Current,
Fast Settling Op Amp
AD842*
CONNECTION DIAGRAMS
Plastic DIP (N) Package
and
Cerdip (Q) Package
NC
1
NC
2
BALANCE
3
–INPUT
4
+INPUT
5
V–
6
+
14
13
12
11
10
9
LCC (E) Package
2
BALANCE
20
BALANCE
3
NC
1
NC
AD842
NC
BALANCE
NC
V+
OUTPUT
NC
NC
NC
4
–IN
5
NC
6
+IN
7
NC
8
+
19
NC
18
17
16
NC
+V
S
AD842
NC
9
–V
S 10
NC
11
NC
12
NC
13
NC
15
OUTPUT
14
NC
NC
7
TOP VIEW
8
NC = NO CONNECT
NC = NO CONNECT
TO-8 (H) Package
BALANCE
BALANCE
NC
NC
SOIC (R-16) Package
NC
1
16
NC
BALANCE
+V
S
NC
OUTPUT
NC
NC
NC
V+
BALANCE
2
–INPUT
3
AD842
15
14
13
12
AD842
–INPUT
+
OUTPUT
NC
4
+
+INPUT
5
+INPUT
V–
NC
NC
NC
6
–V
S 7
NC
8
11
10
The AD842 is a member of the Analog Devices family of wide
bandwidth operational amplifiers. This device is fabricated using
Analog Devices’ junction isolated complementary bipolar (CB)
process. This process permits a combination of dc precision and
wideband ac performance previously unobtainable in a mono-
lithic op amp. In addition to its 80 MHz gain bandwidth, the
AD842 offers extremely fast settling characteristics, typically
settling to within 0.01% of final value in less than 100 ns for a
10 volt step.
The AD842 also offers a low quiescent current of 13 mA, a high
output current drive capability (100 mA minimum), a low input
voltage noise of 9 nV√Hz and a low input offset voltage (1 mV
maximum).
The 375 V/µs slew rate of the AD842, along with its 80 MHz
gain bandwidth, ensures excellent performance in video and
pulse amplifier applications. This amplifier is ideally suited for
use in high frequency signal conditioning circuits and wide
bandwidth active filters. The extremely rapid settling time of
the AD842 makes this amplifier the preferred choice for data
acquisition applications which require 12-bit accuracy. The
*Covered
by U.S. Patent Nos. 4,969,823 and 5,141,898.
NC
TOP VIEW
9
TOP VIEW
NOTE: CAN BE TIED TO V+
NC = NO CONNECT
NC = NO CONNECT
AD842 is also appropriate for other applications such as high
speed DAC and ADC buffer amplifiers and other wide band-
width circuitry.
APPLICATION HIGHLIGHTS
1. The high slew rate and fast settling time of the AD842 make
it ideal for DAC and ADC buffers amplifiers, lines drivers
and all types of video instrumentation circuitry.
2. The AD842 is a precision amplifier. It offers accuracy to
0.01% or better and wide bandwidth; performance previously
available only in hybrids.
3. Laser-wafer trimming reduces the input offset voltage of
1 mV max, thus eliminating the need for external offset
nulling in many applications.
4. Full differential inputs provide outstanding performance in
all standard high frequency op amp applications where the
circuit gain will be 2 or greater.
5. The AD842 is an enhanced replacement for the HA2542.
REV. E
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
World Wide Web Site: http://www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2000
AD842–SPECIFICATIONS
(@ +25 C and
Model
Conditions
INPUT OFFSET VOLTAGE
3
T
MIN
–T
MAX
Offset Drift
INPUT BIAS CURRENT
T
MIN
–T
MAX
Input Offset Current
T
MIN
–T
MAX
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
INPUT VOLTAGE RANGE
Common Mode
Common-Mode Rejection
INPUT VOLTAGE NOISE
Wideband Noise
OPEN-LOOP GAIN
Differential Mode
100
2.0
10
86
80
0.1
14
4.2
Min
0.5
15 V dc, unless otherwise noted)
AD842K
Min Typ Max
0.3
14
8
10
0.4
0.5
3.5
0.05
5
6
0.2
0.3
1.0
1.5
Min
AD842S
2
Typ
0.5
14
4.2
0.1
8
12
0.4
0.6
Max
1.5
3.5
Units
mV
mV
µV/°C
µA
µA
µA
µA
kΩ
pF
V
dB
dB
nV/√Hz
µV
rms
V/mV
V/mV
V
mA
Ω
MHz
MHz
ns
%
V/µs
ns
ns
%
Degree
V
V
mA
mA
dB
dB
°C
AD842J/JR
1
Typ
Max
1.5
2.5/3
100
2.0
10
90
86
10
86
80
100
2.0
V
CM
=
±
10 V
T
MIN
–T
MAX
f = 1 kHz
10 Hz to 10 MHz
V
O
=
±
10 V
R
LOAD
≥
500
Ω
T
MIN
–T
MAX
R
LOAD
≥
500
Ω
V
OUT
=
±
10 V
Open Loop
V
OUT
= 90 mV
V
O
= 20 V p-p
R
LOAD
≥
500
Ω
A
VCL
= –2
A
VCL
= –2
A
VCL
= –2
10 V Step
to 0.1%
to 0.01%
f = 4.4 MHz
f = 4.4 MHz
115
9
28
115
9
28
115
9
28
40/30
20/15
10
100
90
50
25
10
100
90
40
20
10
100
90
OUTPUT CHARACTERISTICS
Voltage
Current
FREQUENCY RESPONSE
Gain Bandwidth Product
Full Power Bandwidth
4
Rise Time
5
Overshoot
5
Slew Rate
5
Settling Time
5
5
80
4.7
6
10
20
375
80
100
0.015
0.035
±
15
5
13/14
18
14/16
16/19.5
5
4.7
5
80
6
10
20
375
80
100
0.015
0.035
±
15
13
90
86
+75
0
AD842KN
AD842KQ
105
18
14
16
5
4.7
5
80
6
10
20
375
80
100
0.015
0.035
±
15
13
86
80
+75
–55
100
18
14
19
300
300
300
Differential Gain
Differential Phase
POWER SUPPLY
Rated Performance
Operating Range
Quiescent Current
Power Supply Rejection Ratio
TEMPERATURE RANGE
Rated Performance
6
PACKAGE OPTIONS
Plastic (N-14)
Cerdip (Q-14)
SOIC (R-16)
Tape and Reel
TO-8 (H-12A)
LCC (E-20A)
Chips
T
MIN
–T
MAX
V
S
=
±
5 V to
±
18 V
T
MIN
–T
MAX
86
80
0
100
+125
AD842JN
AD842JQ
AD842JR-16
AD842JR-16-REEL
AD842JR-16-REEL7
AD842JH
AD842JCHIPS
AD842SQ, AD842SQ/883B
AD842KH
AD842SH
AD842SE/883B
AD842SCHIPS
NOTES
1
AD842JR specifications differ from those of the AD842JN, JQ and JH due to the thermal characteristics of the SOIC package.
2
Standard Military Drawing available 5962-8964201xx
2A – (SE/883B); XA – (SH/883B); CA – (SQ/883B).
3
Input offset voltage specifications are guaranteed after 5 minutes at T
A
= +25°C.
4
Full power bandwidth = slew rate/2
π
V
PEAK
.
5
Refer to Figures 22 and 23.
6
“S” grade T
MIN
–T
MAX
specifications are tested with automatic test equipment at T
A
= –55°C and T
A
= +125°C.
All min and max specifications are guaranteed. Specifications shown in
boldface
are tested on all production units.
Specifications subject to change without notice.
–2–
REV. E
AD842
ABSOLUTE MAXIMUM RATINGS
1
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
±
18 V
Internal Power Dissipation
2
Plastic (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 W
Cerdip (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 W
TO-8 (H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 W
SOIC (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 W
LCC (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 W
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
±
V
S
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . .
±
6 V
Storage Temperature Range
Q, H, E . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
N, R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +175°C
Lead Temperature Range (Soldering 60 sec) . . . . . . . . +300°C
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
2
Maximum internal power dissipation is specified so that T
J
does not exceed
+150°C at an ambient temperature of +25°C.
Thermal Characteristics:
θ
JC
θ
JA
θ
SA
Plastic Package
30°C/W
100°C/W
Cerdip Package
30°C/W
110°C/W
38°C/W
TO-8 Package
30°C/W
100°C/W
27°C/W
16-Lead SOIC Package 30°C/W
100°C/W
20-Lead LCC Package 35°C/W
150°C/W
Recommended Heat Sink: Aavid Engineering© #602B
METALIZATION PHOTOGRAPH
Contact factory for latest dimensions.
Dimensions shown in inches and (mm).
REV. E
–3–
AD842–Typical Characteristics
(at +25 C and V =
S
20
20
15 V, unless otherwise noted)
30
OUTPUT VOLTAGE SWING – Volts p-p
INPUT COMMON-MODE RANGE – Volts
OUTPUT VOLTAGE SWING – Volts
25
15V SUPPLIES
20
15
15
V
IN
10
15
V
OUT
10
10
5
5
5
0
0
0
5
10
SUPPLY VOLTAGE –
15
Volts
20
0
0
5
10
SUPPLY VOLTAGE –
15
Volts
20
10
100
1k
LOAD RESISTANCE –
10k
Figure 1. Input Common-Mode
Range vs. Supply Voltage
Figure 2. Output Voltage Swing
vs. Supply Voltage
Figure 3. Output Voltage Swing
vs. Load Resistance
18
–5
100
QUIESCENT CURRENT – mA
INPUT BIAS CURRENT – A
–4
OUTPUT IMPEDANCE –
16
10
14
1
–3
12
0.1
10
0
5
10
SUPPLY VOLTAGE –
15
Volts
20
–2
–60 –40 –20
0 20 40 60 80 100 120 140
TEMPERATURE – C
0.01
10k
1M
10M
100k
FREQUENCY – Hz
100M
Figure 4. Quiescent Current vs.
Supply Voltage
Figure 5. Input Bias Current vs.
Temperature
Figure 6. Output Impedance vs.
Frequency
18
SHORT CIRCUIT CURRENT LIMIT – mA
300
275
GAIN BANDWIDTH – MHz
85
17
QUIESCENT CURRENT – mA
16
15
14
13
12
11
10
–60 –40 –20
250
+ OUTPUT CURRENT
225
200
175
–OUTPUT CURRENT
150
125
100
–60 –40 –20 0 20 40 60 80 100 120 140
AMBIENT TEMPERATURE – C
80
75
70
0 20 40 60 80 100 120 140
TEMPERATURE – C
65
–60 –40 –20
0 20 40 60 80 100 120 140
TEMPERATURE – C
Figure 7. Quiescent Current vs.
Temperature
Figure 8. Short-Circuit Current
Limit vs. Temperature
Figure 9. Gain Bandwidth Product
vs. Temperature
–4–
REV. E