TSOP582..
Vishay Semiconductors
IR Receiver Modules for Remote Control Systems
Description
The TSOP582.. - series are miniaturized receivers for
infrared remote control systems. PIN diode and
preamplifier are assembled on lead frame, the epoxy
package is designed as IR filter.
The demodulated output signal can directly be
decoded by a microprocessor. TSOP582.. is the stan-
dard IR remote control receiver series, supporting all
major transmission codes.
19026
Features
• Photo detector and preamplifier in one
package
• Build in filter for carrier frequency of IR
e3
signal
• Shielding against electrical field
disturbance
• TTL and CMOS compatibility
• Output active low
• Low power consumption
• Lead (Pb)-free component
• Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
Mechanical Data
Pinning:
1 = OUT, 2 = GND, 3 = V
S
Parts Table
Part
TSOP58230
TSOP58233
TSOP58236
TSOP58237
TSOP58238
TSOP58240
TSOP58256
Carrier Frequency
30 kHz
33 kHz
36 kHz
36.7 kHz
38 kHz
40 kHz
56 kHz
Special Features
• Improved immunity against ambient light
• Suitable burst length
≥
10 cycles/burst
Block Diagram
16833
Application Circuit
16842
3
30 kΩ
Input
PIN
AGC
Band
Pass
Demo-
dulator
V
S
Circuit
Transmitter
TSOPxxxx
with
TSALxxxx
R
1
= 100
Ω
V
S
C
1
=
4.7 µF
V
O
+V
S
1
OUT
OUT
GND
µC
GND
2
Control Circuit
GND
R
1
+ C
1
recommended to suppress power supply
disturbances.
The output
voltage
should not
be
hold continuously a
a
voltage below V
O =
3.3
V by
the external circuit.
Document Number 81221
Rev. 1.0, 16-Nov-05
www.vishay.com
1
TSOP582..
Vishay Semiconductors
Absolute Maximum Ratings
Absolute Maximum Ratings
T
amb
= 25 °C, unless otherwise specified
Parameter
Supply Voltage
Supply Current
Output Voltage
Output Current
Junction Temperature
Storage Temperature Range
Operating Temperature Range
Power Consumption
Soldering Temperature
(T
amb
≤
85 °C)
t
≤
10 s, 1 mm from case
(Pin 3)
(Pin 3)
(Pin 1)
(Pin 1)
Test condition
Symbol
V
S
I
S
V
O
I
O
T
j
T
stg
T
amb
P
tot
T
sd
Value
- 0.3 to + 6.0
5
- 0.3 to + (Vs + 0.3)
10
100
- 25 to + 85
- 25 to + 85
50
260
Unit
V
mA
V
mA
°C
°C
°C
mW
°C
Electrical and Optical Characteristics
T
amb
= 25 °C, unless otherwise specified
Parameter
Supply Current (Pin 3)
Supply Voltage
Transmission Distance
E
v
= 0, test signal see fig.1,
IR diode TSAL6200,
I
F
= 400 mA
I
OSL
= 0.5 mA, E
e
= 0.7 mW/m
2
,
test signal see fig. 1
Pulse width tolerance:
t
pi
- 5/f
o
< t
po
< t
pi
+ 6/f
o
,
test signal see fig.1
Pulse width tolerance:
t
pi
- 5/f
o
< t
po
< t
pi
+ 6/f
o
,
test signal see fig.1
t
pi
- 5/f
o
< t
po
< t
pi
+ 6/f
o
,
test signal see fig. 1
Angle of half transmission
distance
Test condition
V
S
= 5 V, E
v
= 0
V
S
= 5 V, E
v
= 40 klx, sunlight
Symbol
I
SD
I
SH
V
S
d
4.5
35
Min
0.8
Typ.
1.2
1.5
5.5
Max
1.5
Unit
mA
mA
V
m
Output Voltage Low (Pin 1)
Minimum Irradiance
(30 - 40 kHz)
V
OSL
250
mV
E
e min
0.35
0.5
mW/m
2
Minimum Irradiance (56 kHz)
E
e min
E
e max
ϕ
1/2
0.4
0.6
mW/m
2
W/m
2
Maximum Irradiance
Directivity
30
± 45
deg
www.vishay.com
2
Document Number 81221
Rev. 1.0, 16-Nov-05
TSOP582..
Vishay Semiconductors
Typical Characteristics (Tamb = 25
°C
unless otherwise specified)
E
e
Optical Test Signal
(IR
diode TSAL6200, I
F
=
0.4 A, 30 pulses,
f = f
0
,
T
=
10 ms)
1.0
T
on
,T
off
– Output Pulse
Width
(ms)
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.1
1.0
= 950 nm,
optical test signal, fig.3
Toff
Ton
t
t
pi
*
T
*
t
pi
w
10/fo is recommended
for
optimal
function
V
O
V
OH
V
OL
t
d1
)
Output Signal
1
)
2
)
16110
7/f
0
<
t
d
<
15/f
0
t
pi
–5/f
0
<
t
po
<
t
pi
+6/f
0
t
po2
)
t
10.0
100.0 1000.0 10000.0
16909
E
e
– Irradiance (mW/m²)
Figure 1. Output Function
Figure 4. Output Pulse Diagram
1.0
0.9
t
po
– Output Pulse
Width
(ms)
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.1
16908
1.2
E
e min
/ E
e
– Rel. Responsivity
Output Pulse
1.0
0.8
0.6
0.4
0.2
0.0
0.7
16925
Input Burst Duration
= 950 nm,
optical test signal, fig.1
f = f
0
5 %
f ( 3dB ) = f
0
/10
0.9
1.1
f/f
0
– Relative Frequency
1.3
1.0
10.0 100.0 1000.0 10000.0
E
e
– Irradiance (mW/m²)
Figure 2. Pulse Length and Sensitivity in Dark Ambient
Figure 5. Frequency Dependence of Responsivity
E
e min
– Threshold Irradiance (mW/m
2
)
E
e
Optical Test Signal
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.01
Ambient, = 950 nm
Correlation
with
ambient light sources:
10
W/m
2
1.4 klx (Std.illum.A, T= 2855 K)
10
W/m
2
8.2
klx (Daylight, T = 5900 K)
600
ms
T
=
60 ms
Output Signal,
(
see
Fig.4 )
600
ms
t
94
8134
V
O
V
OH
V
OL
T
on
T
off
t
16911
0.10
1.00
10.00
100.00
2
)
E – Ambient DC Irradiance (W/m
Figure 3. Output Function
Figure 6. Sensitivity in Bright Ambient
Document Number 81221
Rev. 1.0, 16-Nov-05
www.vishay.com
3
TSOP582..
Vishay Semiconductors
E
e min
– Threshold Irradiance (mW/m²)
)
rel
– Relative Spectral Sensitivity
S(
2.0
f = f
o
f = 10 kHz
1.0
1.2
1.0
0.8
0.6
0.4
0.2
0
750
1.5
f = 1 kHz
0.5
f = 100 Hz
0.0
0.1
1.0
10.0
100.0
1000.0
V
sRMS
– AC
Voltage
on DC Supply
Voltage
(mV)
850
950
1050
1150
16912
94
8408
–
W
avelength (nm)
Figure 7. Sensitivity vs. Supply Voltage Disturbances
Figure 10. Relative Spectral Sensitivity vs. Wavelength
0.8
0.7
Max. Envelope
Duty Cycle
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0
16913
0°
10°
20°
30°
40°
1.0
0.9
0.8
50°
60°
70°
80°
f =
38 kHz,
E
e
=
2
mW/m
2
0.7
20
40
60
80
100 120
Burst
Length (
number of cycles
/ burst )
0.6
19258
0.4
0.2
0
0.2
0.4
0.6
d
rel
- Relative Transmission Distance
Figure 8. Max. Envelope Duty Cycle vs. Burstlength
Figure 11. Horizontal Directivity
ϕ
x
0.6
E
e min
– Threshold Irradiance (mW/m²)
0.5
0.4
1.0
0.3
0.2
0.1
0.0
–30 –15
0.9
0.8
0.7
Sensitivity in dark ambient
0°
10°
20°
30°
40°
50°
60°
70°
80°
0
15
30
45
60
75
90
19259
0.6
0.4
0.2
0
0.2
0.4
0.6
16918
T
amb
– Ambient Temperature (°C)
d
rel
- Relative Transmission Distance
Figure 9. Sensitivity vs. Ambient Temperature
Figure 12. Vertical Directivity
ϕ
y
www.vishay.com
4
Document Number 81221
Rev. 1.0, 16-Nov-05
TSOP582..
Vishay Semiconductors
Suitable Data Format
The circuit of the TSOP582.. is designed in that way
that unexpected output pulses due to noise or distur-
bance signals are avoided. A bandpass filter, an inte-
grator stage and an automatic gain control are used
to suppress such disturbances.
The distinguishing mark between data signal and dis-
turbance signal are carrier frequency, burst length
and duty cycle.
The data signal should fulfill the following conditions:
• Carrier frequency should be close to center fre-
quency of the bandpass (e.g. 38 kHz).
• Burst length should be 10 cycles/burst or longer.
• After each burst which is between 10 cycles and 70
cycles a gap time of at least 14 cycles is necessary.
• For each burst which is longer than 1.8 ms a corre-
sponding gap time is necessary at some point in the
data stream. This gap time should be at least 4 times
longer than the burst.
• Up to 800 short bursts per second can be received
continuously.
Some examples for suitable data format are: NEC
Code (repetitive pulse), NEC Code (repetitive data),
Toshiba Micom Format, Sharp Code, RC5 Code,
RC6 Code, R-2000 Code, Sony Code.
When a disturbance signal is applied to the
TSOP582.. it can still receive the data signal. How-
ever the sensitivity is reduced to such a level that no
unexpected pulses will occur.
Some examples for such disturbance signals which
are suppressed by the TSOP582.. are:
• DC light (e.g. from tungsten bulb or sunlight)
• Continuous signal at 38 kHz or at any other fre-
quency
• Signals from fluorescent lamps with electronic bal-
last with high or low modulation
(see Figure 13 or Figure 14).
IR Signal
IR Signal from fluorescent
lamp
with
low modulation
0
16920
5
10
Time (ms)
15
20
Figure 13. IR Signal from Fluorescent Lamp with low Modulation
IR Signal from fluorescent
lamp
with
high modulation
IR Signal
0
16921
5
10
Time (ms)
15
20
Figure 14. IR Signal from Fluorescent Lamp with high Modulation
Document Number 81221
Rev. 1.0, 16-Nov-05
www.vishay.com
5