D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
MC34262, MC33262
Power Factor Controllers
The MC34262/MC33262 are active power factor controllers
specifically designed for use as a preconverter in electronic ballast
and in off−line power converter applications. These integrated
circuits feature an internal startup timer for stand−alone applications,
a one quadrant multiplier for near unity power factor, zero current
detector to ensure critical conduction operation, transconductance
error amplifier, quickstart circuit for enhanced startup, trimmed
internal bandgap reference, current sensing comparator, and a totem
pole output ideally suited for driving a power MOSFET.
Also included are protective features consisting of an overvoltage
comparator to eliminate runaway output voltage due to load removal,
input undervoltage lockout with hysteresis, cycle−by−cycle current
limiting, multiplier output clamp that limits maximum peak switch
current, an RS latch for single pulse metering, and a drive output high
state clamp for MOSFET gate protection. These devices are
available in dual−in−line and surface mount plastic packages.
Features
http://onsemi.com
POWER FACTOR
CONTROLLERS
MARKING
DIAGRAMS
8
PDIP−8
P SUFFIX
CASE 626
8
1
1
MC3x262P
AWL
YYWWG
•
•
•
•
•
•
•
•
•
•
Overvoltage Comparator Eliminates Runaway Output Voltage
Internal Startup Timer
One Quadrant Multiplier
Zero Current Detector
Trimmed 2% Internal Bandgap Reference
Totem Pole Output with High State Clamp
Undervoltage Lockout with 6.0 V of Hysteresis
Low Startup and Operating Current
Supersedes Functionality of SG3561 and TDA4817
Pb−Free Packages are Available
Zero Current Detector
5
Zero Current
Detect Input
8
8
1
SOIC−8
D SUFFIX
CASE 751
1
x
A
WL, L
YY, Y
WW, W
G
G
= 3 or 4
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
= Pb−Free Package
3x262
ALYW
G
2.5V
Reference
Undervoltage
Lockout
V
CC
8
PIN CONNECTIONS
Drive Output
Multiplier,
Latch,
PWM,
Timer,
&
Logic
7
Current Sense
Input
Voltage Feedback
1
Input
Compensation 2
Multiplier Input 3
Current Sense 4
Input
(Top View)
8 V
CC
7 Drive Output
6 GND
5 Zero Current
Detect Input
Overvoltage
Comparator
+
Error Amp
1.08 V
ref
4
ORDERING INFORMATION
Multiplier
Input 3
+
Multiplier
Quickstart
GND
6
Compensation
2
V
ref
Voltage
Feedback
1 Input
See detailed ordering and shipping information in the package
dimensions section on page 17 of this data sheet.
Figure 1. Simplified Block Diagram
©
Semiconductor Components Industries, LLC, 2005
1
November, 2005 − Rev. 9
Publication Order Number:
MC34262/D
MC34262, MC33262
MAXIMUM RATINGS
Rating
Total Power Supply and Zener Current
Output Current, Source or Sink (Note 1)
Current Sense, Multiplier, and Voltage Feedback Inputs
Zero Current Detect Input
High State Forward Current
Low State Reverse Current
Power Dissipation and Thermal Characteristics
P Suffix, Plastic Package, Case 626
Maximum Power Dissipation @ T
A
= 70°C
Thermal Resistance, Junction−to−Air
D Suffix, Plastic Package, Case 751
Maximum Power Dissipation @ T
A
= 70°C
Thermal Resistance, Junction−to−Air
Operating Junction Temperature
Operating Ambient Temperature (Note 3)
MC34262
MC33262
Storage Temperature
Symbol
(I
CC
+ I
Z
)
I
O
V
in
I
in
50
−10
Value
30
500
−1.0 to +10
Unit
mA
mA
V
mA
P
D
R
qJA
P
D
R
qJA
T
J
T
A
800
100
450
178
+150
0 to + 85
− 40 to +105
mW
°C/W
mW
°C/W
°C
°C
T
stg
− 65 to +150
°C
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values
(not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage
may occur and reliability may be affected.
ELECTRICAL CHARACTERISTICS
(V
CC
= 12 V (Note 2), for typical values T
A
= 25°C, for min/max values T
A
is the operating
ambient temperature range that applies (Note 3), unless otherwise noted.)
Characteristic
ERROR AMPLIFIER
Voltage Feedback Input Threshold
T
A
= 25°C
T
A
= T
low
to T
high
(V
CC
= 12 V to 28 V)
Line Regulation (V
CC
= 12 V to 28 V, T
A
= 25°C)
Input Bias Current (V
FB
= 0 V)
Transconductance (T
A
= 25°C)
Output Current
Source (V
FB
= 2.3 V)
Sink (V
FB
= 2.7 V)
Output Voltage Swing
High State (V
FB
= 2.3 V)
Low State (V
FB
= 2.7 V)
OVERVOLTAGE COMPARATOR
Voltage Feedback Input Threshold
MULTIPLIER
Input Bias Current, Pin 3 (V
FB
= 0 V)
Input Threshold, Pin 2
I
IB
V
th(M)
−
1.05 V
OL(EA)
− 0.1
1.2 V
OL(EA)
− 0.5
−
mA
V
V
FB(OV)
1.065 V
FB
1.08 V
FB
1.095 V
FB
V
V
FB
2.465
2.44
Reg
line
I
IB
g
m
I
O
−
−
V
OH(ea)
V
OL(ea)
5.8
−
10
10
6.4
1.7
−
−
V
−
2.4
−
−
80
2.5
−
1.0
− 0.1
100
2.535
2.54
10
− 0.5
130
mV
mA
mmho
mA
V
Symbol
Min
Typ
Max
Unit
1. Maximum package power dissipation limits must be observed.
2. Adjust V
CC
above the startup threshold before setting to 12 V.
3. T
low
= 0°C for MC34262
T
high
= +85°C for MC34262
= −40°C for MC33262
= +105°C for MC33262.
http://onsemi.com
2
MC34262, MC33262
ELECTRICAL CHARACTERISTICS
(continued)
(V
CC
= 12 V (Note 5), for typical values T
A
= 25°C, for min/max values T
A
is the
operating ambient temperature range that applies (Note 6), unless otherwise noted.)
Characteristic
MULTIPLIER
Dynamic Input Voltage Range
Multiplier Input (Pin 3)
Compensation (Pin 2)
Multiplier Gain (V
Pin 3
= 0.5 V, V
Pin 2
= V
th(M)
+ 1.0 V) (Note 7)
ZERO CURRENT DETECTOR
Input Threshold Voltage (V
in
Increasing)
Hysteresis (V
in
Decreasing)
Input Clamp Voltage
High State (I
DET
= + 3.0 mA)
Low State (I
DET
= − 3.0 mA)
CURRENT SENSE COMPARATOR
Input Bias Current (V
Pin 4
= 0 V)
Input Offset Voltage (V
Pin 2
= 1.1 V, V
Pin 3
= 0 V)
Maximum Current Sense Input Threshold (Note 8)
Delay to Output
DRIVE OUTPUT
Output Voltage (V
CC
= 12 V)
Low State
(I
Sink
= 20 mA)
Low State
(I
Sink
= 200 mA)
High State (I
Source
= 20 mA)
High State
(I
Source
= 200 mA)
Output Voltage (V
CC
= 30 V)
High State (I
Source
= 20 mA, C
L
= 15 pF)
Output Voltage Rise Time (C
L
= 1.0 nF)
Output Voltage Fall Time (C
L
= 1.0 nF)
Output Voltage with UVLO Activated
(V
CC
= 7.0 V, I
Sink
= 1.0 mA)
RESTART TIMER
Restart Time Delay
UNDERVOLTAGE LOCKOUT
Startup Threshold (V
CC
Increasing)
Minimum Operating Voltage After Turn−On (V
CC
Decreasing)
Hysteresis
TOTAL DEVICE
Power Supply Current
Startup (V
CC
= 7.0 V)
Operating
Dynamic Operating (50 kHz, C
L
= 1.0 nF)
Power Supply Zener Voltage (I
CC
= 25 mA)
I
CC
−
−
−
V
Z
30
0.25
6.5
9.0
36
0.4
12
20
−
V
mA
V
th(on)
V
Shutdown
V
H
11.5
7.0
3.8
13
8.0
5.0
14.5
9.0
6.2
V
V
V
t
DLY
200
620
−
ms
V
V
OL
V
OH
V
O(max)
14
t
r
t
f
V
O(UVLO)
−
−
−
16
50
50
0.1
18
120
120
0.5
ns
ns
V
−
−
9.8
7.8
0.3
2.4
10.3
8.4
0.8
3.3
−
−
V
I
IB
V
IO
V
th(max)
t
PHL(in/out)
−
−
1.3
−
− 0.15
9.0
1.5
200
−1.0
25
1.8
400
mA
mV
V
ns
V
th
V
H
V
IH
V
IL
1.33
100
6.1
0.3
1.6
200
6.7
0.7
1.87
300
−
1.0
V
mV
V
V
V
Pin 3
V
Pin 2
K
0 to 2.5
V
th(M)
to
(V
th(M)
+ 1.0)
0.43
0 to 3.5
V
th(M)
to
(V
th(M)
+ 1.5)
0.65
−
−
0.87
1/V
Symbol
Min
Typ
Max
Unit
4. Maximum package power dissipation limits must be observed.
5. Adjust V
CC
above the startup threshold before setting to 12 V.
6. T
low
= 0°C for MC34262
T
high
= +85°C for MC34262
= −40°C for MC33262
= +105°C for MC33262.
Pin 4 Threshold
7. K
+
VPin 3 (VPin2
*
Vth(M))
8. This parameter is measured with V
FB
= 0 V, and V
Pin 3
= 3.0 V.
http://onsemi.com
3
MC34262, MC33262
V
CS
, CURRENT SENSE PIN 4 THRESHOLD (V)
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
− 0.2
0.6
1.4
2.2
V
Pin 2
= 2.0 V
3.0
3.8
V
CC
= 12 V
T
A
= 25°C
V
Pin 2
= 3.75 V
V
Pin 2
= 3.5 V
V
Pin 2
= 3.25 V
V
Pin 2
= 3.0 V
V
Pin 2
= 2.5 V
V
Pin 2
= 2.25 V
V
Pin 2
= 2.75 V
V
CS
, CURRENT SENSE PIN 4 THRESHOLD (V)
0.08
V
Pin 2
= 3.75 V
0.07 V
Pin 2
= 3.5 V
V
Pin 2
= 3.25 V
0.06 V
Pin 2
= 3.0 V
0.05 V
Pin 2
= 2.75 V
0.04
0.03
0.02
0.01
0
− 0.12
V
CC
= 12 V
T
A
= 25°C
V
Pin 2
= 2.5 V
V
Pin 2
= 2.25 V
V
Pin 2
= 2.0 V
V
M
, MULTIPLIER PIN 3 INPUT VOLTAGE (V)
− 0.06
0
0.06
0.12
0.18
V
M
, MULTIPLIER PIN 3 INPUT VOLTAGE (V)
0.24
Figure 2. Current Sense Input Threshold
versus Multiplier Input
DV
FB
, VOLTAGE FEEDBACK THRESHOLD CHANGE (mV)
DV
FB(OV)
, OVERVOLTAGE INPUT THRESHOLD (%V
FB
)
Figure 3. Current Sense Input Threshold
versus Multiplier Input, Expanded View
4.0
V
CC
= 12 V
Pins 1 to 2
0
− 4.0
− 8.0
−12
−16
− 55
110
V
CC
= 12 V
109
108
107
− 25
0
25
50
75
100
125
106
− 55
− 25
0
25
50
75
100
125
T
A
, AMBIENT TEMPERATURE (°C)
T
A
, AMBIENT TEMPERATURE (°C)
Figure 4. Voltage Feedback Input Threshold
Change versus Temperature
Figure 5. Overvoltage Comparator Input
Threshold versus Temperature
120
Phase
g
m
, TRANSCONDUCTANCE (mmho)
100
80
60
40
20
0
3.0 k
Transconductance
V
CC
= 12 V
V
O
= 2.5 V to 3.5 V
R
L
= 100 k to 3.0 V
C
L
= 2.0 pF
T
A
= 25°C
0
4.00 V
q,
EXCESS PHASE (DEGREES)
30
60
90
120
150
180
3.0 M
V
CC
= 12 V
R
L
= 100 k
C
L
= 2.0 pF
T
A
= 25°C
V/DIV
5.0
ms/DIV
3.25 V
2.50 V
10 k
30 k
100 k 300 k
f, FREQUENCY (Hz)
1.0 M
Figure 6. Error Amp Transconductance and
Phase versus Frequency
Figure 7. Error Amp Transient Response
http://onsemi.com
4
0