l
l
l
l
l
l
l
l
l
RoHS Compliant
Lead-Free (Qualified up to 260°C Reflow)
Application Specific MOSFETs
Ideal for CPU Core DC-DC Converters
Low Conduction Losses and Switching Losses
High Cdv/dt Immunity
Low Profile (<0.7mm)
Dual Sided Cooling Compatible
Compatible with existing Surface Mount Techniques
DirectFET Power MOSFET
IRF6609PbF
IRF6609TRPbF
Qg
46nC
PD - 97091A
V
DSS
20V
R
DS(on)
max
2.0mΩ@V
GS
= 10V
2.6mΩ@V
GS
= 4.5V
Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details)
SQ
SX
ST
MQ
MX
MT
MT
DirectFET ISOMETRIC
Description
The IRF6609PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET
TM
packaging to achieve
the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compat-
ible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET
package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6609PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation
of processors operating at higher frequencies. The IRF6609PbF has been optimized for parameters that are critical in synchronous buck
operating from 12 volt bus converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6609PbF offers
particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications.
Absolute Maximum Ratings
Parameter
V
DS
V
GS
I
D
@ T
C
= 25°C
I
D
@ T
A
= 25°C
I
D
@ T
A
= 70°C
I
DM
P
D
@T
C
= 25°C
P
D
@T
A
= 25°C
P
D
@T
A
= 70°C
T
J
T
STG
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, V
GS
Continuous Drain Current, V
GS
Pulsed Drain Current
Power Dissipation
Max.
Units
V
Continuous Drain Current, V
GS
@ 10V
k
Power Dissipation
h
Power Dissipation
h
e
k
@ 10V
Ãh
@ 10V
h
20
±20
150
31
25
250
89
1.8
2.8
0.022
-40 to + 150
A
W
W/°C
°C
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Thermal Resistance
R
θJA
R
θJA
R
θJA
R
θJC
R
θJ-PCB
hl
Junction-to-Ambient
il
Junction-to-Ambient
jl
Junction-to-Case
kl
Junction-to-Ambient
Parameter
Typ.
–––
12.5
20
–––
1.0
Max.
45
–––
–––
1.4
–––
Units
°C/W
Junction-to-PCB Mounted
Notes
through
are on page 10
www.irf.com
1
7/3/06
IRF6609PbF
BV
DSS
∆ΒV
DSS
/∆T
J
R
DS(on)
V
GS(th)
∆V
GS(th)
/∆T
J
I
DSS
I
GSS
gfs
Q
g
Q
gs1
Q
gs2
Q
gd
Q
godr
Q
sw
Q
oss
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Q
gs2
+ Q
gd
)
Output Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min. Typ. Max. Units
20
–––
–––
–––
1.55
–––
–––
–––
–––
–––
91
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
15
1.6
2.0
–––
-6.1
–––
–––
–––
–––
–––
46
15
4.7
15
11
20
26
24
95
26
9.8
6290
1850
860
–––
–––
2.0
2.6
2.45
–––
1.0
150
100
-100
–––
69
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
pF
V
GS
= 0V
V
DS
= 10V
ns
nC
nC
V
DS
= 10V
V
GS
= 4.5V
I
D
= 17A
S
nA
V
mV/°C
µA
V
mΩ
Conditions
V
GS
= 0V, I
D
= 250µA
V
GS
= 10V, I
D
= 31A
V
GS
= 4.5V, I
D
mV/°C Reference to 25°C, I
D
= 1mA
g
= 25A
g
V
DS
= V
GS
, I
D
= 250µA
V
DS
= 16V, V
GS
= 0V
V
DS
= 16V, V
GS
= 0V, T
J
= 150°C
V
GS
= 20V
V
GS
= -20V
V
DS
= 10V, I
D
= 25A
See Fig. 16
V
DS
= 10V, V
GS
= 0V
V
DD
= 16V, V
GS
= 4.5V
I
D
= 25A
Clamped Inductive Load
Ãg
ƒ = 1.0MHz
Avalanche Characteristics
Parameter
E
AS (Thermally limited)
Single Pulse Avalanche Energy
I
AR
E
AR
Avalanche Current
Ãe
f
Typ.
–––
–––
–––
Max.
240
See Fig. 12, 13, 18a,
18b,
Units
mJ
A
mJ
Repetitive Avalanche Energy
e
–––
–––
–––
–––
–––
–––
–––
0.80
32
26
Diode Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Min. Typ. Max. Units
89
A
250
1.2
48
39
V
ns
nC
Conditions
MOSFET symbol
showing the
integral reverse
G
S
D
Ãe
p-n junction diode.
T
J
= 25°C, I
S
= 25A, V
GS
= 0V
T
J
= 25°C, I
F
= 25A
di/dt = 100A/µs
g
2
g
www.irf.com
IRF6609PbF
1000
TOP
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
1000
TOP
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
10
10
1
2.7V
0.1
0.1
1
2.7V
≤
60µs PULSE WIDTH
Tj = 150°C
1
0.1
1
10
100
≤
60µs PULSE WIDTH
Tj = 25°C
10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
1000.0
1.5
100.0
T J = 150°C
10.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current
(Α)
ID = 31A
VGS = 10V
1.0
T J = 25°C
1.0
VDS = 10V
≤
60µs PULSE WIDTH
0.1
2.0
3.0
4.0
5.0
0.5
-60 -40 -20
0
20
40
60
80 100 120 140 160
VGS, Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
vs. Temperature
www.irf.com
3
IRF6609PbF
100000
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
12
ID= 17A
VGS, Gate-to-Source Voltage (V)
10
8
6
4
2
0
VDS= 20V
VDS= 10V
C, Capacitance (pF)
10000
Ciss
Coss
1000
Crss
100
1
10
100
0
20
40
60
80
100
120
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5.
Typical Capacitance vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge vs.
Gate-to-Source Voltage
1000.0
ID, Drain-to-Source Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1msec
100µsec
ISD, Reverse Drain Current (A)
100.0
T J = 150°C
100
10.0
10
10msec
1
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
0.1
1
10
100
1.0
T J = 25°C
VGS = 0V
0.1
0.0
0.4
0.8
1.2
1.6
2.0
VSD, Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRF6609PbF
150
2.5
120
VGS(th) Gate threshold Voltage (V)
ID , Drain Current (A)
2.0
90
ID = 250µA
60
1.5
30
0
25
50
75
100
125
150
1.0
-75
-50
-25
0
25
50
75
100
125
150
T J , Junction Temperature (°C)
T J , Temperature ( °C )
Fig 9.
Maximum Drain Current vs.
Case Temperature
Fig 10.
Threshold Voltage vs. Temperature
100
10
Thermal Response ( Z thJA )
1
D = 0.50
0.20
0.10
0.05
0.02
0.01
τ
J
R
1
R
1
τ
J
τ
1
τ
2
R
2
R
2
R
3
R
3
τ
3
R
4
R
4
τ
C
τ
τ
2
τ
3
τ
4
τ
4
0.1
Ri (°C/W)
0.6784
17.299
17.566
9.4701
τi
(sec)
0.00086
0.57756
8.94
106
0.01
τ
1
0.001
SINGLE PULSE
( THERMAL RESPONSE )
Ci=
τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.01
0.1
1
10
100
0.0001
1E-006
1E-005
0.0001
0.001
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5