IRFH8316PbF
HEXFET
®
Power MOSFET
V
DS
V
gs max
R
DS(on) max
(@V
GS
= 10V)
(@V
GS
= 4.5V)
30
± 20
2.95
4.30
30.0
50
V
V
m
nC
A
Q
g typ
I
D
(@T
c(Bottom)
= 25°C)
i
PQFN 5X6 mm
Applications
Synchronous MOSFET for high frequency buck converters
Features and Benefits
Features
Low Thermal Resistance to PCB (< 1.7°C/W)
Low Profile (<1.2mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Consumer Qualification
Benefits
Enable better thermal dissipation
results in Increased Power Density
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Orderable part number
IRFH8316TRPBF
IRFH8316TR2PBF
Package Type
PQFN 5mm x 6mm
PQFN 5mm x 6mm
Standard Pack
Form
Quantity
Tape and Reel
4000
Tape and Reel
400
Note
Absolute Maximum Ratings
Parameter
V
DS
V
GS
I
D
@ T
A
= 25°C
I
D
@ T
A
= 70°C
I
D
@ T
C(Bottom)
= 25°C
I
D
@ T
C(Bottom)
= 100°C
I
D
@ T
C
= 25°C
I
DM
P
D
@T
A
= 25°C
P
D
@T
C(Bottom)
= 25°C
T
J
T
STG
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V (Package Limited)
Pulsed Drain Current
Power Dissipation
Power Dissipation
Max.
30
± 20
27
21
120
78
50
490
3.6
59
0.029
-55 to + 150
Units
V
g
g
c
hi
hi
i
A
W
W/°C
°C
Linear Derating Factor
Operating Junction and
Storage Temperature Range
g
Notes
through
are on page 9
1
www.irf.com
©
2012 International Rectifier
July 19, 2012
IRFH8316PbF
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
DSS
V
DSS
/T
J
R
DS(on)
V
GS(th)
V
GS(th)
I
DSS
I
GSS
gfs
Q
g
Q
g
Q
gs1
Q
gs2
Q
gd
Q
godr
Q
sw
Q
oss
R
G
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Q
gs2
+ Q
gd
)
Output Charge
Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Parameter
Single Pulse Avalanche Energy
Avalanche Current
Min.
30
–––
–––
–––
1.2
–––
–––
–––
–––
–––
69
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
21
2.40
3.40
1.7
-6.4
–––
–––
–––
–––
–––
59
30.0
7.0
2.7
9.7
10.6
12.4
18
1.1
19
67
20
24
3610
740
390
Max. Units
–––
–––
2.95
4.30
2.2
–––
1
150
100
-100
–––
–––
45.0
–––
–––
–––
–––
–––
–––
1.7
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
–––
Conditions
V
GS
= 0V, I
D
= 250μA
V
mV/°C Reference to 25°C, I
D
= 1.0mA
V
GS
= 10V, I
D
= 20A
m
V
GS
= 4.5V, I
D
= 16A
V
V
DS
= V
GS
, I
D
= 50μA
mV/°C
V
DS
= 24V, V
GS
= 0V
μA
V
DS
= 24V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
nA
V
GS
= -20V
V
DS
= 10V, I
D
= 20A
S
nC V
GS
= 10V, V
DS
= 15V, I
D
= 20A
e
e
nC
V
DS
= 15V
V
GS
= 4.5V
I
D
= 20A
nC
ns
V
DS
= 16V, V
GS
= 0V
V
DD
= 15V, V
GS
= 4.5V
I
D
= 20A
R
G
=1.8
V
GS
= 0V
V
DS
= 10V
ƒ = 1.0MHz
Max.
160
20
Units
mJ
A
pF
Avalanche Characteristics
E
AS
I
AR
d
Min.
–––
–––
–––
–––
Diode Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Typ.
–––
–––
–––
14
Max. Units
50
Conditions
MOSFET symbol
D
i
A
Ã
490
1.0
21
V
ns
showing the
integral reverse
G
S
p-n junction diode.
T
J
= 25°C, I
S
= 20A, V
GS
= 0V
T
J
= 25°C, I
F
= 20A, V
DD
= 15V
e
–––
18
27
nC di/dt = 380A/μs
Time is dominated by parasitic Inductance
eÃ
Thermal Resistance
R
JC
(Bottom)
R
JC
(Top)
R
JA
R
JA
(<10s)
f
Junction-to-Case
f
Junction-to-Case
Parameter
g
Junction-to-Ambient
g
Junction-to-Ambient
Typ.
–––
–––
–––
–––
Max.
1.7
32
35
22
Units
°C/W
2
www.irf.com
©
2012 International Rectifier
July 19, 2012
IRFH8316PbF
1000
TOP
1000
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.8V
2.5V
2.3V
TOP
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.8V
2.5V
2.3V
10
10
1
2.3V
2.3V
60μs
PULSE WIDTH
Tj = 25°C
0.1
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
60μs
PULSE WIDTH
1
0.1
1
Tj = 150°C
10
100
VDS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
1000
RDS(on) , Drain-to-Source On Resistance
(Normalized)
Fig 2.
Typical Output Characteristics
1.8
ID = 20A
1.6
1.4
1.2
1.0
0.8
0.6
VGS = 10V
ID, Drain-to-Source Current(A)
100
TJ = 150°C
10
TJ = 25°C
1
VDS = 15V
0.1
1
2
3
4
5
6
7
60μs
PULSE WIDTH
-60 -40 -20 0
20 40 60 80 100 120 140 160
VGS, Gate-to-Source Voltage (V)
TJ , Junction Temperature (°C)
Fig 3.
Typical Transfer Characteristics
100000
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Fig 4.
Normalized On-Resistance vs. Temperature
14
VGS, Gate-to-Source Voltage (V)
12
10
8
6
4
2
0
ID= 20A
VDS= 24V
VDS= 15V
VDS= 6.0V
C, Capacitance (pF)
10000
Ciss
1000
Coss
Crss
100
1
10
VDS, Drain-to-Source Voltage (V)
100
0
10
20
30
40
50
60
70
80
QG Total Gate Charge (nC)
Fig 5.
Typical Capacitance vs.Drain-to-Source Voltage
3
www.irf.com
©
2012 International Rectifier
Fig 6.
Typical Gate Charge vs.Gate-to-Source Voltage
July 19, 2012
IRFH8316PbF
1000
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
1000
100
TJ = 150°C
100
1msec
100μsec
TJ = 25°C
10
10
Limited By Source
Bonding Technology
i
10msec
DC
1
VGS = 0V
1.0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VSD, Source-to-Drain Voltage (V)
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
1
0.1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode Forward Voltage
140
120
ID, Drain Current (A)
Fig 8.
Maximum Safe Operating Area
2.4
VGS(th), Gate threshold Voltage (V)
Limited By Source
Bonding Technology
i
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
-75 -50 -25
0
25
50
75 100 125 150
TJ , Temperature ( °C )
ID = 50μA
ID = 250μA
ID = 1.0mA
ID = 1.0A
100
80
60
40
20
0
25
50
75
100
125
150
TC, Case Temperature (°C)
Fig 9.
Maximum Drain Current vs.
Case (Bottom) Temperature
10
Fig 10.
Threshold Voltage vs. Temperature
Thermal Response ( ZthJC )
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
4
www.irf.com
©
2012 International Rectifier
July 19, 2012
IRFH8316PbF
RDS(on), Drain-to -Source On Resistance (m )
10
ID = 20A
8
EAS , Single Pulse Avalanche Energy (mJ)
700
600
500
400
300
200
100
0
0
5
10
15
20
25
50
75
100
125
150
Starting TJ , Junction Temperature (°C)
ID
TOP
5.6A
8.6A
BOTTOM 20A
6
4
TJ = 125°C
TJ = 25°C
2
VGS, Gate -to -Source Voltage (V)
Fig 12.
On-Resistance vs. Gate Voltage
Fig 13.
Maximum Avalanche Energy vs. Drain Current
V
(BR)DSS
15V
tp
VDS
L
DRIVER
RG
20V
D.U.T
IAS
tp
+
V
- DD
A
I
AS
0.01
Fig 14a.
Unclamped Inductive Test Circuit
Fig 14b.
Unclamped Inductive Waveforms
V
DS
V
GS
R
G
V10V
GS
Pulse Width
µs
Duty Factor
R
D
90%
D.U.T.
+
V
DS
-
V
DD
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 15a.
Switching Time Test Circuit
Fig 15b.
Switching Time Waveforms
5
www.irf.com
©
2012 International Rectifier
July 19, 2012