New TSOP322../TSOP324..
Vishay Semiconductors
IR Receiver Modules for Remote Control Systems
Description
The TSOP32#.. series are miniaturized receivers for
infrared remote control systems. A PIN diode and a
preamplifier are assembled on a lead frame, the
epoxy package acts as an IR filter.
The demodulated output signal can be directly
decoded by a microprocessor. The TSOP322.. is
compatible with all common IR remote control data
formats. The TSOP324.. is optimized to suppress
almost all spurious pulses from energy saving
fluorescent lamps but will also suppress some data
signals.
This component has not been qualified according to
automotive specifications.
1
2
3
16672
Mechanical Data
Pinning:
1 = OUT, 2 = V
S
, 3 = GND
Features
• Very low supply current
• Photo detector and preamplifier in one
package
e3
• Internal filter for PCM frequency
• Improved shielding against EMI
• Supply voltage: 2.5 V to 5.5 V
• Improved immunity against ambient light
• Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
• Insensitive to supply voltage ripple and noise
Product Matrix
Standard applications
TSOP322..
Very noisy enviroments
TSOP324..
Parts Table
Part
TSOP32#30
TSOP32#33
TSOP32#36
TSOP32#38
TSOP32#40
TSOP32#56
Carrier Frequency
30 kHz
33 kHz
36 kHz
38 kHz
40 kHz
56 kHz
Block Diagram
16835
Application Circuit
2
30 kΩ
V
S
19267
1
Input
AG
C
Band
Pass
Demo-
dulator
OUT
IR Transmitter
with
TSALxxxx
TSOP....
V
S
OUT
Circuit
µC
V
O
GND
3
PIN
Control Circuit
GND
No
external components are required
Document Number 81747
Rev. 1.0, 08-Aug-07
www.vishay.com
1
New TSOP322../TSOP324..
Vishay Semiconductors
Absolute Maximum Ratings
T
amb
= 25 °C, unless otherwise specified
Parameter
Supply voltage
Supply current
Output voltage
Output current
Junction temperature
Storage temperature range
Operating temperature range
Power consumption
Soldering temperature
(T
amb
≤
85 °C)
t
≤
10 s, 1 mm from case
(Pin 2)
(Pin 2)
(Pin 1)
(Pin 1)
Test condition
Symbol
V
S
I
S
V
O
I
O
T
j
T
stg
T
amb
P
tot
T
sd
Value
- 0.3 to + 6.0
3
- 0.3 to
(V
S
+ 0.3)
5
100
- 25 to + 85
- 25 to + 85
10
260
Unit
V
mA
V
mA
°C
°C
°C
mW
°C
Electrical and Optical Characteristics
T
amb
= 25 °C, unless otherwise specified
Parameter
Supply current (Pin 2)
Supply voltage
Transmission distance
E
v
= 0, test signal see fig. 1,
IR diode TSAL6200,
I
F
= 250 mA
I
OSL
= 0.5 mA, E
e
= 0.7 mW/m
2
,
test signal see fig. 1
Pulse width tolerance:
t
pi
- 5/f
o
< t
po
< t
pi
+ 6/f
o
,
test signal see fig. 1
t
pi
- 5/f
o
< t
po
< t
pi
+ 6/f
o
,
test signal see fig. 1
Angle of half transmission
distance
Test condition
E
v
= 0, V
S
= 3.3 V
E
v
= 40 klx, sunlight
Symbol
I
SD
I
SH
V
S
d
2.5
45
Min
0.27
Typ.
0.35
0.45
5.5
Max
0.45
Unit
mA
mA
V
m
Output voltage low (Pin 1)
V
OSL
100
mV
Minimum irradiance
E
e min
E
e max
ϕ
1/2
0.1
0.25
mW/m
2
W/m
2
Maximum irradiance
Directivity
30
± 45
deg
www.vishay.com
2
Document Number 81747
Rev. 1.0, 08-Aug-07
New TSOP322../TSOP324..
Vishay Semiconductors
Typical Characteristics
T
amb
= 25 °C, unless otherwise specified
0.8
(IR diode TSAL6200, I
F
= 0.4 A, 30 pulses, f = f
0
, T = 10 ms)
T
on
, T
off
- Output Pulse
Width
(ms)
E
e
Optical Test Signal
T
on
0.7
0.6
0.5
T
off
0.4
0.3
0.2
0.1
0
0.1
λ
= 950 nm,
optical test signal, fig. 3
1
10
100
1000
10000
t
t
pi
*
* t
pi
V
O
V
OH
V
OL
t
d1 )
T
10/fo is recommended for optimal function
16110
Output Signal
1)
2)
7/f
0
<
t
d
<
15/f
0
t
pi
- 5/f
0
<
t
po
<
t
pi
+ 6/f
0
t
po2 )
t
20744
E
e
- Irradiance (mW/m²)
Figure 1. Output Active Low
Figure 4. Output Pulse Diagram
1
1.2
Output Pulse
Width
1.0
0.8
0.6
0.4
0.2
0.0
f = f
0
± 5 %
f (3 dB) =
f
0
/10
t
po
- Output Pulse
Width
(ms)
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.1
Input Burst Length
λ
= 950 nm,
optical test signal, fig. 1
1
10
100
1000
10000
16925
E
e min
/E
e
- Rel. Responsivity
0.7
0.9
1.1
1.3
20743
E
e
- Irradiance (mW/m²)
f/f
0
- Relative Frequency
Figure 2. Pulse Length and Sensitivity in Dark Ambient
Figure 5. Frequency Dependence of Responsivity
E
emin
- Threshold Irradiance (mW/m²)
E
e
Optical Test Signal
4
Correlation
with
ambient light sources:
3.5 10
W/m²
= 1.4 kLx (Std. illum. A, T = 2855 K)
10
W/m²
=
8.2
kLx (Daylight, T = 5900 K)
3
2.5
2
1.5
1
0.5
0
0.01
Wavelength
of ambient
illumination:
λ
= 950 nm
600 µs
T = 60 ms
Output Signal,
(see fig. 4)
600 µs
t
94
8134
V
O
V
OH
V
OL
T
on
T
off
t
20745
0.1
1
10
100
E
e
- Ambient DC Irradiance (W/m²)
Figure 3. Output Function
Figure 6. Sensitivity in Bright Ambient
Document Number 81747
Rev. 1.0, 08-Aug-07
www.vishay.com
3
New TSOP322../TSOP324..
Vishay Semiconductors
E
e min
- Threshold Irradiance (mW/m²)
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
1
10
f = 100 Hz
E
e min
- Threshold Irradiance (mW/m²)
1000
1
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0
- 30
- 10
10
30
50
70
90
f = 10 kHz
f = 20 kHz
f = 30 kHz
f = f
o
100
20746
Vs
RMS
- AC
Voltage
on DC Supply
Voltage
(mV)
20749
T
amb
- Ambient Temperature (°C)
Figure 7. Sensitivity vs. Supply Voltage Disturbances
Figure 10. Sensitivity vs. Ambient Temperature
500
1.2
E - Max. Field Strength (V/m)
450
400
350
300
250
200
150
100
50
0
0
500
1000
1500
2000
2500
3000
S (
λ
)
rel
- Relative Spectral Sensitivity
1.0
0.8
0.6
0.4
0.2
0.0
750
850
950
1050
1150
20747
f - EMI Frequency (MHz)
16919
λ
-
Wavelength
(nm)
Figure 8. Sensitivity vs. Electric Field Disturbances
Figure 11. Relative Spectral Sensitivity vs. Wavelength
0°
10°
20°
30°
1
0.9
Max. Envelope Duty Cycle
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
TSOP324..
f = 38 kHz, E
e
= 2 mW/m²
20
40
60
80
100
120
0.6
96 12223p2
40°
1.0
0.9
50°
60°
70°
0.7
80°
TSOP322..
0.8
0.4
0.2
0
0.2
0.4
0.6
20775
Burst Length (number of cycles/burst)
d
rel
- Relative Transmission Distance
Figure 9. Max. Envelope Duty Cycle vs. Burst Length
Figure 12. Directivity
www.vishay.com
4
Document Number 81747
Rev. 1.0, 08-Aug-07
New TSOP322../TSOP324..
Vishay Semiconductors
0.2
0.18
E
e min
- Sensitivity (mW/m²)
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0
2
2.5
3
3.5
4
4.5
5
5.5
6
16920
IR Signal
IR Signal from fluorescent
lamp
with
low modulation
0
5
10
15
20
20750
V
s
- Supply
Voltage
(V)
Time (ms)
Figure 13. Sensitivity vs. Supply Voltage
Figure 14. IR Signal from Fluorescent Lamp
with Low Modulation
Suitable Data Format
The TSOP32#.. series is designed to suppress
spurious output pulses due to noise or disturbance
signals. Data and disturbance signals can be
distinguished by the devices according to carrier
frequency, burst length and envelope duty cycle. The
data signal should be close to the band-pass center
frequency (e.g. 38 kHz) and fulfill the conditions in the
table below.
When a data signal is applied to the TSOP32#.. in the
presence of a disturbance signal, the sensitivity of the
receiver is reduced to insure that no spurious pulses
are present at the output. Some examples of
disturbance signals which are suppressed are:
• DC light (e.g. from tungsten bulb or sunlight)
• Continuous signals at any frequency
• Strongly or weakly modulated noise from
fluorescent lamps with electronic ballasts (see
figure 14 or figure 15).
Minimum burst length
After each burst of length
A gap time is required of
For bursts greater than
A gap time in the data stream is needed of
Maximum continuous short bursts/second
Compatible to NEC code
Compatible to RC5/RC6 code
Compatible to Sony code
Compatible to Thomson 56 kHz code
Compatible to Mitsubishi code (38 kHz, preburst 8 ms, 16 bit)
Compatible to Sharp code
Suppression of interference from fluorescent lamps
IR Signal from fluorescent
lamp
with
high modulation
IR Signal
0
16921
10
10
15
20
Time (ms)
Figure 15. IR Signal from Fluorescent Lamp
with High Modulation
TSOP322..
10 cycles/burst
10 to 70 cycles
10 cycles
70 cycles
> 4 x burst length
1800
yes
yes
yes
yes
yes
yes
Most common disturbance
signals are suppressed
TSOP324..
10 cycles/burst
10 to 35 cycles
10 cycles
35 cycles
> 10 x burst length
1500
yes
yes
no
yes
no
yes
Even extreme disturbance
signals are suppressed
For data formats with short bursts please see the data sheet for TSOP321../TSOP323..
Document Number 81747
Rev. 1.0, 08-Aug-07
www.vishay.com
5