SKiiP 1013 GB172-2DL V3
Absolute Maximum Ratings
Symbol
System
V
CC1)
V
isol
I
t(RMS)
I
FSM
I²t
Operating DC link voltage
DC, t = 1 s, main terminals to heat sink
per AC terminal, T
terminal
<115°C
T
j
= 125 °C, t
p
= 10 ms, sin 180°
T
j
= 150 °C, t
p
= 10 ms, diode
fundamental output frequency
storage temperature
T
j
= 25 °C
T
j
= 150 °C
T
s
= 25 °C
T
s
= 70 °C
1200
5600
400
6900
238
1
-40 ... 85
1700
1072
824
1000
junction temperature
T
j
= 25 °C
T
j
= 150 °C
T
s
= 25 °C
T
s
= 70 °C
-40 ... 150
1700
879
669
830
junction temperature
power supply
input signal voltage (high)
QPD <= 10pC, PRIM to POWER
secondary to primary side
switching frequency
-40 ... 150
13 ... 30
15 + 0.3
1500
75
14
V
V
A
A
kA²s
kHz
°C
V
A
A
A
°C
V
A
A
A
°C
V
V
V
kV/µs
kHz
T
s
= 25°C unless otherwise specified
Values
Unit
Conditions
SKiiP 3
2-pack-integrated intelligent
Power System
SKiiP 1013 GB172-2DL V3
Features
•
•
•
•
•
•
•
SKiiP technology inside
Trench IGBTs
CAL HD diode technology
Integrated current sensor
Integrated temperature sensor
Integrated heat sink
UL recognized File no. E63532
®
f
out
T
stg
IGBT
V
CES
I
C
I
Cnom
T
j
Diode
V
RRM
I
F
I
Fnom
T
j
Driver
V
s
V
iH
V
isolPD
dv/dt
f
sw
Typical Applications*
•
•
•
•
Renewable energies
Traction
Elevators
Industrial drives
Characteristics
Symbol
IGBT
V
CE(sat)
V
CE0
r
CE
E
on
+ E
off
R
th(j-s)
R
th(j-r)
at terminal
I
C
= 600 A
T
j
= 125 °C
per IGBT switch
per IGBT switch
I
C
= 600 A
at terminal
T
j
= 25 °C
T
j
= 125 °C
T
j
= 25 °C
T
j
= 125 °C
T
j
= 25 °C
T
j
= 125 °C
V
CC
= 900 V
V
CC
= 1200 V
T
s
= 25°C unless otherwise specified
min.
typ.
1.9
2.2
1.00
0.90
1.48
2.1
390
575
0.03
0.024
1.20
1.10
2
2.5
Conditions
max.
2.4
Unit
V
V
V
V
m
m
mJ
mJ
K/W
K/W
Footnotes
1
With assembly of suitable MKP capacitor per
terminal
S23
© by SEMIKRON
Rev. 2 – 23.11.2012
1
SKiiP 1013 GB172-2DL V3
Characteristics
Symbol
Diode
V
F
= V
EC
V
F0
r
F
at terminal
I
F
= 600 A
T
j
= 125 °C
per diode switch
per diode switch
supply voltage non stabilized
bias current @V
s
=24V, f
sw
= 0, I
AC
= 0
k
1
= 29 mA/kHz, k
2
= 0.00065
mA/A
2
= 240
12.3
4.6
10
1
0.0122
3
125
0.625
1225
110
1250
115
not impl.
1.4
1.4
0.7
1275
120
input threshold voltage (HIGH)
Input threshold voltage (LOW)
input resistance
input capacitance
error memory reset time
top / bottom switch interlock time
jitter clock time
short pulse suppression time
over current trip level
over temperature trip level
over voltage trip level,
input-output
turn-on
V
CC
= 1200 V
propagation time
I
C
= 600 A
input-output
T
j
= 25 °C
turn-off
propagation time
flow rate=460m
3
/h, T
a
=25°C, 500m
above sea level
terminals to chip, T
s
= 25 °C
commutation inductance
per phase, AC-side
V
GE
= 0 V, V
CE
= 1700 V, T
j
= 25 °C
DC terminals, SI Units
AC terminals, SI Units
SKiiP System w/o heat sink
heat sink
6
13
1.7
4.4
0.25
6
3.4
2.4
8
15
13
24
240
+ k
1
* f
sw
+ k
2
*
I
AC2
I
F
= 600 A
at terminal
T
j
= 25 °C
T
j
= 125 °C
T
j
= 25 °C
T
j
= 125 °C
T
j
= 25 °C
T
j
= 125 °C
V
R
= 900 V
V
R
= 1200 V
2.00
1.80
1.1
0.8
1.5
1.7
72
86
0.058
0.078
30
1.2
0.9
1.6
1.8
2.15
V
V
V
V
m
m
mJ
mJ
K/W
K/W
V
mA
mA
V
V
k
nF
ms
µs
ns
µs
A
PEAK
°C
V
µs
µs
T
s
= 25°C unless otherwise specified
min.
typ.
max.
Unit
Conditions
SKiiP 3
2-pack-integrated intelligent
Power System
SKiiP 1013 GB172-2DL V3
Features
•
•
•
•
•
•
•
SKiiP technology inside
Trench IGBTs
CAL HD diode technology
Integrated current sensor
Integrated temperature sensor
Integrated heat sink
UL recognized File no. E63532
®
E
rr
R
th(j-s)
R
th(j-r)
Driver
V
s
I
S0
I
s
V
IT+
V
IT-
R
IN
C
IN
t
pRESET
t
TD
t
jitter
t
SIS
I
TRIPSC
T
trip
V
DCtrip
t
d(on)IO
t
d(off)IO
System
R
th(r-a)
R
CC'+EE'
L
CE
C
CHC
I
CES
+ I
RD
M
dc
M
ac
w
w
h
Typical Applications*
•
•
•
•
Renewable energies
Traction
Elevators
Industrial drives
Footnotes
1
With assembly of suitable MKP capacitor per
terminal
0.0344
K/W
m
nH
nF
mA
Nm
Nm
kg
kg
S23
2
Rev. 2 – 23.11.2012
© by SEMIKRON
SKiiP 1013 GB172-2DL V3
© by SEMIKRON
Rev. 2 – 23.11.2012
3
SKiiP 1013 GB172-2DL V3
Fig. 1: Typical IGBT output characteristic
Fig. 2: Typical diode output characteristics
Fig. 3: Typical energy losses E = f(I
c
, V
cc
)
Fig. 4: Typical energy losses E = f(I
c
, V
cc
)
Fig. 5: Pressure drop
Δp
versus flow rate V
Fig. 6: Transient thermal impedance Zth(j-r)
4
Rev. 2 – 23.11.2012
© by SEMIKRON
SKiiP 1013 GB172-2DL V3
Fig. 7: Transient thermal impedance Zth(r-a)
Fig. 8: Coefficients of thermal impedances
Fig. 9: Thermal resistance Rth(r-a) versus flow rate V
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested
for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is
subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.
© by SEMIKRON
Rev. 2 – 23.11.2012
5