EEWORLDEEWORLDEEWORLD

Part Number

Search

EMCL13L2J-53.125M

Description
CRYSTAL OSCILLATOR, CLOCK, 53.125MHz, LVPECL OUTPUT, ROHS COMPLIANT, PLASTIC, SMD, 6 PIN
CategoryPassive components    oscillator   
File Size205KB,5 Pages
ManufacturerECLIPTEK
Websitehttp://www.ecliptek.com
Environmental Compliance  
Download Datasheet Parametric View All

EMCL13L2J-53.125M Overview

CRYSTAL OSCILLATOR, CLOCK, 53.125MHz, LVPECL OUTPUT, ROHS COMPLIANT, PLASTIC, SMD, 6 PIN

EMCL13L2J-53.125M Parametric

Parameter NameAttribute value
Is it lead-free?Lead free
Is it Rohs certified?conform to
MakerECLIPTEK
Reach Compliance Codecompliant
Other featuresCOMPLEMENTARY OUTPUT; BULK
maximum descent time0.3 ns
Frequency Adjustment - MechanicalNO
frequency stability100%
JESD-609 codee4
Manufacturer's serial numberEMCL13
Installation featuresSURFACE MOUNT
Nominal operating frequency53.125 MHz
Maximum operating temperature70 °C
Minimum operating temperature-20 °C
Oscillator typeLVPECL
Output load50 OHM
physical size7.0mm x 5.0mm x 0.85mm
longest rise time0.3 ns
Maximum supply voltage3.6 V
Minimum supply voltage3 V
Nominal supply voltage3.3 V
surface mountYES
maximum symmetry55/45 %
Terminal surfaceNickel/Palladium/Gold (Ni/Pd/Au)

EMCL13L2J-53.125M Preview

EMCL13L2J-53.125M
Series
RoHS Compliant (Pb-free) 3.3V 6 Pad 5mm x 7mm
Plastic SMD LVPECL MEMS Oscillator
Frequency Tolerance/Stability
±100ppm Maximum over -20°C to +70°C
Duty Cycle
50 ±5(%)
RoHS
Pb
EMCL13 L 2 J -53.125M
Nominal Frequency
53.125MHz
Logic Control / Additional Output
Standby (ST) and Complementary Output
ELECTRICAL SPECIFICATIONS
Nominal Frequency
Frequency Tolerance/Stability
53.125MHz
±100ppm Maximum over -20°C to +70°C (Inclusive of all conditions: Calibration Tolerance at 25°C,
Frequency Stability over the Operating Temperature Range, Supply Voltage Change, Output Load Change,
1st Year Aging at 25°C, Reflow, Shock, and Vibration)
±1ppm First Year Maximum
+3.3Vdc ±0.3Vdc
80mA Maximum (Excluding Load Termination Current)
2.35Vdc Typical, Vcc-1.025Vdc Minimum
1.6Vdc Typical, Vcc-1.62Vdc Maximum
150pSec Typical, 300pSec Maximum (Measured over 20% to 80% of waveform)
50 ±5(%) (Measured at 50% of waveform)
50 Ohms into Vcc-2.0Vdc
LVPECL
Standby (ST) and Complementary Output
Vih of 70% of Vcc Minimum or No Connect to Enable Output and Complementary Output, Vil of 30% of Vcc
Maximum to Disable Output and Complementary Output (High Impedance)
30µA Maximum (ST) Without Load
0.2pSec Typical
2.0pSec Typical
1.5pSec Typical, 3.0pSec Maximum
20pSec Typical, 25pSec Maximum
1.7pSec Typical
1.4pSec Typical
1.1pSec Typical
10mSec Maximum
-55°C to +125°C
Aging at 25°C
Supply Voltage
Input Current
Output Voltage Logic High (Voh)
Output Voltage Logic Low (Vol)
Rise/Fall Time
Duty Cycle
Load Drive Capability
Output Logic Type
Logic Control / Additional Output
Output Control Input Voltage
Standby Current
Period Jitter (Deterministic)
Period Jitter (Random)
Period Jitter (RMS)
Period Jitter (pk-pk)
RMS Phase Jitter (Fj = 637kHz to
10MHz; Random)
RMS Phase Jitter (Fj = 1MHz to
20MHz; Random)
RMS Phase Jitter (Fj = 1.875MHz to
20MHz; Random)
Start Up Time
Storage Temperature Range
ENVIRONMENTAL & MECHANICAL SPECIFICATIONS
ESD Susceptibility
Flammability
Mechanical Shock
Moisture Resistance
Moisture Sensitivity Level
Resistance to Soldering Heat
Resistance to Solvents
Solderability
Temperature Cycling
Thermal Shock
Vibration
MIL-STD-883, Method 3015, Class 2, HBM 2000V
UL94-V0
MIL-STD-883, Method 2002, Condition G, 30,000G
MIL-STD-883, Method 1004
J-STD-020, MSL 1
MIL-STD-202, Method 210, Condition K
MIL-STD-202, Method 215
MIL-STD-883, Method 2003 (Six I/O Pads on bottom of package only)
MIL-STD-883, Method 1010, Condition B
MIL-STD-883, Method 1011, Condition B
MIL-STD-883, Method 2007, Condition A, 20G
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 8/13/2010 | Page 1 of 5
EMCL13L2J-53.125M
MECHANICAL DIMENSIONS (all dimensions in millimeters)
5.00
±0.15
0.85
±0.15
0.08
MAX
3
7.00
±0.15
5.08
±0.10
4
PIN
CONNECTION
Standby (ST)
No Connect
Case Ground
Output
Complementary Output
Supply Voltage
1.20 ±0.10 (x4)
1.47
1
2
3
4
5
6
2
A
5
2.30
LINE MARKING
1
1
2.54 TYP
2.60
±0.15
6
1.40
±0.10 (x4)
XXXX or XXXXX
XXXX or XXXXX=Ecliptek
Manufacturing Lot Code
Note A: Center paddle is connected
internally to oscillator ground (Pad 3).
Suggested Solder Pad Layout
All Dimensions in Millimeters
1.80 (X6)
2.00 (X6)
0.54 (X4)
2.39 (X3)
All Tolerances are ±0.1
Solder Land
(X6)
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 8/13/2010 | Page 2 of 5
EMCL13L2J-53.125M
OUTPUT WAVEFORM & TIMING DIAGRAM
TRI-STATE INPUT
V
IH
V
IL
CLOCK OUTPUTS
V
OH
80%
50%
20%
V
OL
Q
OUTPUT STANDBY
(HIGH IMPEDANCE
STATE)
Q
t
PLZ
Fall
Time
Rise
Time
T
W
T
Duty Cycle (%) = T
W
/T x 100
t
PZL
Test Circuit for Tri-State and Complementary Output
50 Ohms
Pin Connections
1 Tri-State
2 No Connect
3 Ground
4 Output
5 Complementary Output
6 Supply Voltage (V
DD
)
Oscilloscope
Frequency
Counter
Power
Supply
Supply
Voltage
(V
DD
)
Current
Meter
0.01µF
(Note 1)
0.1µF
(Note 1)
Complementary
Output
Probe 2
(Note 2)
Output
Probe 1
(Note 2)
50 Ohms
Switch
Power
Supply
Voltage
Meter
Power
Supply
Ground
Tri-State
No
Connect
Power
Supply
Note 1: An external 0.01µF ceramic bypass capacitor in parallel with a 0.1µF high frequency ceramic bypass capacitor close (less than 2mm)
to the package ground and supply voltage pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance (>10Mohms), and high bandwidth (>500MHz) passive probe is
recommended.
Note 3: Test circuit PCB traces need to be designed for a characteristic line impedance of 50 ohms.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 8/13/2010 | Page 3 of 5
EMCL13L2J-53.125M
Recommended Solder Reflow Methods
T
P
Critical Zone
T
L
to T
P
Ramp-up
Ramp-down
Temperature (T)
T
L
T
S
Max
T
S
Min
t
S
Preheat
t 25°C to Peak
t
L
t
P
Time (t)
High Temperature Infrared/Convection
T
S
MAX to T
L
(Ramp-up Rate)
Preheat
- Temperature Minimum (T
S
MIN)
- Temperature Typical (T
S
TYP)
- Temperature Maximum (T
S
MAX)
- Time (t
S
MIN)
Ramp-up Rate (T
L
to T
P
)
Time Maintained Above:
- Temperature (T
L
)
- Time (t
L
)
Peak Temperature (T
P
)
Target Peak Temperature (T
P
Target)
Time within 5°C of actual peak (t
p
)
Ramp-down Rate
Time 25°C to Peak Temperature (t)
Moisture Sensitivity Level
3°C/second Maximum
150°C
175°C
200°C
60 - 180 Seconds
3°C/second Maximum
217°C
60 - 150 Seconds
260°C Maximum for 10 Seconds Maximum
250°C +0/-5°C
20 - 40 seconds
6°C/second Maximum
8 minutes Maximum
Level 1
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 8/13/2010 | Page 4 of 5
EMCL13L2J-53.125M
Recommended Solder Reflow Methods
T
P
Critical Zone
T
L
to T
P
Ramp-up
Ramp-down
Temperature (T)
T
L
T
S
Max
T
S
Min
t
S
Preheat
t 25°C to Peak
t
L
t
P
Time (t)
Low Temperature Infrared/Convection 240°C
T
S
MAX to T
L
(Ramp-up Rate)
Preheat
- Temperature Minimum (T
S
MIN)
- Temperature Typical (T
S
TYP)
- Temperature Maximum (T
S
MAX)
- Time (t
S
MIN)
Ramp-up Rate (T
L
to T
P
)
Time Maintained Above:
- Temperature (T
L
)
- Time (t
L
)
Peak Temperature (T
P
)
Target Peak Temperature (T
P
Target)
Time within 5°C of actual peak (t
p
)
Ramp-down Rate
Time 25°C to Peak Temperature (t)
Moisture Sensitivity Level
5°C/second Maximum
N/A
150°C
N/A
60 - 120 Seconds
5°C/second Maximum
150°C
200 Seconds Maximum
240°C Maximum
240°C Maximum 1 Time / 230°C Maximum 2 Times
10 seconds Maximum 2 Times / 80 seconds Maximum 1 Time
5°C/second Maximum
N/A
Level 1
Low Temperature Manual Soldering
185°C Maximum for 10 seconds Maximum, 2 times Maximum.
High Temperature Manual Soldering
260°C Maximum for 5 seconds Maximum, 2 times Maximum.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev C 8/13/2010 | Page 5 of 5
SBUF, TI/RI, ES
The function is: send a character (such as e) to the microcontroller, and then the microcontroller returns the string "I get e", serial port communication. Copy code#include reg52.h#include intrins.h ...
灞波儿奔 Microcontroller MCU
[Xingkong Board Python Programming Learning Main Control Board Evaluation] Development Environment and Boot Configuration
[i=s]This post was last edited by jinyi7016 on 2022-10-31 10:59[/i]First of all, EEWORLD and DFRobot chose me to try out these Xingkong boards. After receiving the development board, unpack and start ...
jinyi7016 Embedded System
Commonly used delay methods in C language
There are four commonly used delay methods in C language, as shown in Figure 4-2.Figure 2-4 C language delay methodFigure 4-2 shows four common delay methods used in C language programming, two of whi...
Aguilera Microcontroller MCU
[GigaDevice GD32F310 Review] +KEY expansion and parameter settings
Since there is only one user key on board, it is very limited when setting parameters. For this reason, it can be equipped with a membrane soft key for key expansion. The membrane key has a total of 4...
jinglixixi GD32 MCU
What's new in TI BOM and Cross Reference Tools?
[i=s]This post was last edited by qwqwqw2088 on 2020-8-6 11:57[/i]TI now offers a centralized tool for submitting and searching device information and potential equivalent TI cross-reference parts. Pa...
qwqwqw2088 Analogue and Mixed Signal
[Mil MYC-JX8MPQ Review] + Communication between heterogeneous processors
MYD-JX8MP is equipped with a heterogeneous Cortex-M7 coprocessor. It can run Linux and RTOS at the same time. This section mainly introduces the use of the coprocessor M7. M7 may involve sharing resou...
bloong Special Edition for Assessment Centres

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号