BT137 series
GENERAL DESCRIPTION
Glass passivated triacs in a plastic
envelope, intended for use in
applications
requiring
high
bidirectional transient and blocking
voltage capability and high thermal
cycling
performance.
Typical
applications include motor control,
industrial and domestic lighting,
heating and static switching.
SYMBOL
TO220AB
T2
T1
QUICK REFERENCE DATA
SYMBOL
PARAMETER
BT137-
BT137-
BT137-
Repetitive peak off-state
voltages
RMS on-state current
Non-repetitive peak on-state
current
MAX. MAX. MAX. UNIT
500
500F
500G
500
8
65
600
600F
600G
600
8
65
800
800F
800G
800
8
65
G
V
DRM
I
T(RMS)
I
TSM
V
A
A
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134).
SYMBOL
V
DRM
I
T(RMS)
I
TSM
PARAMETER
Repetitive peak off-state
voltages
RMS on-state current
Non-repetitive peak
on-state current
I
2
t for fusing
Repetitive rate of rise of
on-state current after
triggering
full sine wave; T
mb
≤
102 ˚C
full sine wave; T
j
= 25 ˚C prior to
surge
t = 20 ms
t = 16.7 ms
t = 10 ms
I
TM
= 12 A; I
G
= 0.2 A;
dI
G
/dt = 0.2 A/µs
T2+ G+
T2+ G-
T2- G-
T2- G+
CONDITIONS
MIN.
-
-
-
-
-
-
-
-
-
-
-
-
-
-40
-
-500
500
1
MAX.
-600
600
1
8
65
71
21
50
50
50
10
2
5
5
0.5
150
125
-800
800
UNIT
V
A
A
A
A
2
s
A/µs
A/µs
A/µs
A/µs
A
V
W
W
˚C
˚C
I
2
t
dI
T
/dt
I
GM
V
GM
P
GM
P
G(AV)
T
stg
T
j
Peak gate current
Peak gate voltage
Peak gate power
Average gate power
Storage temperature
Operating junction
temperature
over any 20 ms period
1
Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may
switch to the on-state. The rate of rise of current should not exceed 6 A/µs.
2014-6-10
1
www.kersemi.com
BT137 series
THERMAL RESISTANCES
SYMBOL
R
th j-mb
R
th j-a
PARAMETER
CONDITIONS
MIN.
-
-
-
TYP.
-
-
60
MAX.
2.0
2.4
-
UNIT
K/W
K/W
K/W
Thermal resistance
full cycle
junction to mounting base half cycle
Thermal resistance
in free air
junction to ambient
STATIC CHARACTERISTICS
T
j
= 25 ˚C unless otherwise stated
SYMBOL
I
GT
PARAMETER
Gate trigger current
CONDITIONS
BT137-
V
D
= 12 V; I
T
= 0.1 A
T2+ G+
T2+ G-
T2- G-
T2- G+
V
D
= 12 V; I
GT
= 0.1 A
T2+ G+
T2+ G-
T2- G-
T2- G+
V
D
= 12 V; I
GT
= 0.1 A
I
T
= 10 A
V
D
= 12 V; I
T
= 0.1 A
V
D
= 400 V; I
T
= 0.1 A;
T
j
= 125 ˚C
V
D
= V
DRM(max)
;
T
j
= 125 ˚C
MIN.
TYP.
...
-
-
-
-
-
-
-
-
-
-
-
0.25
-
5
8
11
30
7
16
5
7
5
1.3
0.7
0.4
0.1
35
35
35
70
30
45
30
45
20
MAX.
...F
25
25
25
70
30
45
30
45
20
1.65
1.5
-
0.5
...G
50
50
50
100
45
60
45
60
40
mA
mA
mA
mA
mA
mA
mA
mA
mA
V
V
V
mA
UNIT
I
L
Latching current
I
H
V
T
V
GT
I
D
Holding current
On-state voltage
Gate trigger voltage
Off-state leakage current
DYNAMIC CHARACTERISTICS
T
j
= 25 ˚C unless otherwise stated
SYMBOL
dV
D
/dt
PARAMETER
Critical rate of rise of
off-state voltage
Critical rate of change of
commutating voltage
Gate controlled turn-on
time
CONDITIONS
BT137-
V
DM
= 67% V
DRM(max)
;
T
j
= 125 ˚C; exponential
waveform; gate open
circuit
V
DM
= 400 V; T
j
= 95 ˚C;
I
T(RMS)
= 8 A;
dI
com
/dt = 3.6 A/ms; gate
open circuit
I
TM
= 12 A; V
D
= V
DRM(max)
;
I
G
= 0.1 A; dI
G
/dt = 5 A/µs
...
100
MIN.
...F
50
...G
200
TYP.
250
MAX.
-
UNIT
V/µs
dV
com
/dt
-
-
10
20
-
V/µs
t
gt
-
-
-
2
-
µs
2014-6-10
2
www.kersemi.com
BT137 series
Ptot / W
BT137
Tmb(max) / C
101
= 180
120
1
12
10
8
6
4
2
0
10
IT(RMS) / A
BT137
105
109
90
60
30
8
102 C
6
113
4
117
121
125
10
2
0
2
4
6
IT(RMS) / A
8
0
-50
0
50
Tmb / C
100
150
Fig.1. Maximum on-state dissipation, P
tot
, versus rms
on-state current, I
T(RMS)
, where
α
= conduction angle.
BT137
BT137
Fig.4. Maximum permissible rms current I
T(RMS)
,
versus mounting base temperature T
mb
.
BT137
1000
ITSM / A
IT
I TSM
time
25
IT(RMS) / A
20
Tj initial = 25 C max
15
100
dI
T
/dt limit
10
T2- G+ quadrant
5
10
10us
100us
1ms
T/s
10ms
100ms
0
0.01
0.1
1
surge duration / s
10
Fig.2. Maximum permissible non-repetitive peak
on-state current I
TSM
, versus pulse width t
p
, for
sinusoidal currents, t
p
≤
20ms.
Fig.5. Maximum permissible repetitive rms on-state
current I
T(RMS)
, versus surge duration, for sinusoidal
currents, f = 50 Hz; T
mb
≤
102˚C.
VGT(Tj)
VGT(25 C)
80
70
60
50
40
30
ITSM / A
BT137
IT
T
ITSM
time
1.6
1.4
1.2
1
0.8
BT136
Tj initial = 25 C max
20
10
0.6
0.4
-50
0
1
10
100
Number of cycles at 50Hz
1000
0
50
Tj / C
100
150
Fig.3. Maximum permissible non-repetitive peak
on-state current I
TSM
, versus number of cycles, for
sinusoidal currents, f = 50 Hz.
Fig.6. Normalised gate trigger voltage
V
GT
(T
j
)/ V
GT
(25˚C), versus junction temperature T
j
.
2014-6-10
3
www.kersemi.com
BT137 series
IGT(Tj)
IGT(25 C)
IT / A
Tj = 125 C
Tj = 25 C
20
typ
Vo = 1.264 V
Rs = 0.0378 Ohms
3
2.5
2
1.5
BT137
T2+ G+
T2+ G-
T2- G-
T2- G+
25
BT137
max
15
10
1
0.5
0
-50
5
0
50
Tj / C
100
150
0
0
0.5
1
1.5
VT / V
2
2.5
3
Fig.7. Normalised gate trigger current
I
GT
(T
j
)/ I
GT
(25˚C), versus junction temperature T
j
.
IL(Tj)
IL(25 C)
Fig.10. Typical and maximum on-state characteristic.
3
2.5
TRIAC
10
Zth j-mb (K/W)
BT137
unidirectional
1
bidirectional
2
1.5
1
0.5
0
-50
0.01
10us
0.1ms
1ms
10ms
tp / s
0.1
P
D
tp
t
0
50
Tj / C
100
150
0.1s
1s
10s
Fig.8. Normalised latching current I
L
(T
j
)/ I
L
(25˚C),
versus junction temperature T
j
.
IH(Tj)
IH(25C)
Fig.11. Transient thermal impedance Z
th j-mb
, versus
pulse width t
p
.
dV/dt (V/us)
off-state dV/dt limit
BT137...G SERIES
BT137 SERIES
3
2.5
2
1.5
1
0.5
TRIAC
1000
100
BT137...F SERIES
10
dIcom/dt =
10 A/ms
7.9
6.1
4.7
3.6
2.8
0
-50
0
50
Tj / C
100
150
1
0
50
Tj / C
100
150
Fig.9. Normalised holding current I
H
(T
j
)/ I
H
(25˚C),
versus junction temperature T
j
.
Fig.12. Typical commutation dV/dt versus junction
temperature, parameter commutation dI
T
/dt. The triac
should commutate when the dV/dt is below the value
on the appropriate curve for pre-commutation dI
T
/dt.
2014-6-10
4
www.kersemi.com