* Code C, MIL-C-22992, Left-Hand Thread. Connector designations depicted thus [ ] are for reference only and are not to be used in part number development.
BACKSHELL INTERFACE STANDARDS (See pages 15-17 for more information)
DESIG. SPEC.
SERIES
DESIG. SPEC.
SERIES
A
MIL-DTL-5015 MS3400
A
PATT 602
MIL-DTL-26482 2
B
MIL-DTL-5015 MS3100
AS81703
3
C
MIL-C-22992 MS173XX
MIL-DTL-83723 I & III
D
MIL-DTL-26482 1
40M39569
E
MIL-DTL-26500 Aluminum
DEF 5326-3
F
MIL-DTL-38999 I & II
EN 2997, 3646
40M38277
ESC 10, 11
PAN 6433-1
LN 29504
PATT 614
NFC93422 HE302
PATT 616
PAN 6432-1, -2
NFC93422
HE308, 9
DESIG. SPEC.
SERIES
G
MIL-C-28840
H
MIL-DTL-38999 III & IV
EN3645
J
MIL-C-81511 1, 2, 3 & 4
VG95329
K
MIL-DTL-83723 II
DESIG. SPEC.
L
EN3372
JN 1003
LN 29729
NFC93422
PAN 6433-2
PATT 615
VG 96912
S
PATT 105
PATT 603
PATT 608
SERIES
HE306
13
How
to Order
CONNECTOR DESIGNATOR
A THREAD*
REFERENCE
7/16 – 28 UNEF
M12 x 1 – 6H
1/2 – 20 UNF
1/2 – 28 UNEF
9/16 – 24 UNEF
M15 x 1 – 6H
5/8 – 24 UNEF
5/8 – 28 UN
11/16 – 24 UNEF
M18 x 1 – 6H
3/4 – 20 UNEF
13/16 – 20 UNEF
M22 x 1 – 6H
7/8 – 20 UNEF
7/8 – 28 UN
15/16 – 20 UNEF
M25 x 1 – 6H
1 – 20 UNEF
1 - 28 UN
1 1/16 – 18 UNEF
M28 x 1 – 6H
1 1/8 – 18 UNEF
1 1/8 – 28 UN
1 3/16 – 18 UNEF
M31 x 1 – 6H
1 1/4 – 18 UNEF
1 1.4 – 28 UN
1 5/16 – 18 UNEF
M34 x 1 - 6H
1 3/8 – 18 UNEF
1 3/8 – 28 UN
1 7/16 – 18 UNEF
M37 x 1 – 6H
1 1/2 – 18 UNEF
1 1/2 – 28 UN
1 9/16 – UNEF
1 5/8 – UNEF
1 3/4 – 18 UNS
1 7/8 – 16 UN
2 – 18 UNS
2 1/16 – 16 UNS
2 1/8 – 16 UN
2 1/4 – 16 UN
2 5/16 – 16 UNS
2 3/8 – 16 UN
2 1/2 – 16 UN
2 5/8 – 16 UN
2 3/4 – 16 UN
2 7/8 – 16 UN
3 – 16 UN
3 1/16 – 16 UN
B
DIA MAX
.590 (15.)
.650 (16.5)
.650 (16.5)
.650 (16.5)
.720 (18.3)
.770 (19.6)
.770 (19.6)
.770 (19.6)
.840 (21.3)
.890 (22.6)
.970 (24.6)
.970 (24.6)
1.030 (26.2)
1.090 (27.7)
1.030 (26.2)
1.090 (27.7)
1.150 (29.2)
1.220 (29.2)
1.150 (29.2)
1.220 (31.0)
1.280 (32.5)
1.340 (34.0)
1.280 (32.5)
1.340 (34.0)
1.410 (35.8)
1.470 (37.3)
1.410 (35.8)
1.470 (37.3
1.530 (38.9)
1.590 (40.4)
1.530 (38.9)
1.590 (40.4)
1.660 (42.2)
1.660 (42.2)
1.660 (42.2)
C
DIA MAX
.650 (16.5)
.770 (19.6)
.650 (16.5)
.770 (19.6)
.770 (19.6)
.820 (20.8)
.770 (19.6)
.890 (22.6)
.890 (22.6)
.940 (23.9)
.940 (23.9)
1.020 (29.2)
1.070 (26.2)
1.020 (25.9)
1.150 (29.2)
1.150 (29.2)
1.210 (30.7)
1.210 (30.7)
1.360 (34.5)
1.230 (31.2)
1.360 (34.5)
1.360 (34.5)
1.480 (37.6)
1.360 (34.5
1.480 (37.6)
1.530 (38.9)
1.600 (40.6)
1.480 (37.6)
1.600 (40.6)
D
DIA MAX
.770 (19.6)
E
DIA MAX
.690 (17.5)
.940 (24.8)
.690 (17.5)
How
to Order
GLENAIR
SYMBOL
A
B
C*
G*
J
LF
M
N
NC
NF
T
U
ZU**
ZN
*
**
W
N
A
M85049 SYMBOL
REFERENCE ONLY
FINISH
Cadmium Plate, Bright
Anodize, Black
Hard Coat, Anodic
Electroless Nickel
Cadmium Plate, Black
Cadmium Plate, Black
Reference Information
Standard Materials and Finishes
TABLE II - STANDARD FINISHES
SPECIFICATION(S)
AMS-QQ-P-416, Type I, Class 2
AMS-QQ-P-416, Type II, Class 3
AMS-A-8625, Type II, Class 2
AMS-A-8625, Type III, Class 1
Cadmium Plate, Olive Drab
Iridite, Gold Over Cadmium Plate Over MIL-C-5541, Class 3 AMS-QQ-P-416, Type II,
Electroless Nickel
Class 3 over AMS-C-26074, Class 4, Grade B
Cadmium Plate, Bright Over
Electroless Nickel
Cadmium Plate, Olive Drab Over
Electroless Nickel
Zinc Cobalt, Dark Olive Drab
Cadmium Plate, Olive Drab Over
Electroless Nickel
Cadmium Plate, Bright Over
Electroless Nickel
1000 Hour Corrosion Resistance
AMS-C-26074, Class 4, Grade B
AMS-QQ-P-416, Type II, Class 3 over Electroless Nickel
AMS-C-26074
96 Hour Corrosion Resistance
1000 Hour Corrosion Resistance
AMS-QQ-P-416, Type I, Class 3
ASTMB 733-90, SC2, Type I, Class 5, MIL-C-26074***
AMS-QQ-P-416, Type II, Class 3
AMS-QQ-P-416, Type II, Class 3
ASTMB 841-91, Over Electroless Nickel 1000 Hour Salt
Spray
Zinc-Nickel Alloy, Olive Drab
Anodize finish; not suitable for EMI Shielding or grounding applications.
Applicable to corrosion resisting steel backshells and accessories. Consult factory for other available finishes.
The following standard materials are used for the majority of Glenair
backshells and connector accessories. However, backshell compo-
nents are not limited to those items listed, but are representative of
the elements used in Glenair's general accessory products. Contact
Glenair for applicable specifications on items not listed below.
STANDARD MATERIALS - BACKSHELLS AND ACCESSORIES
COMPONENT
Machined components: such as backshell bodies, fabricated elbows, protective covers,
rotatable couplers, dummy stowage receptacles, lock nuts, G-spring support rings,
EMI ground rings, grommet followers, etc.
Die cast components: such as angular backshells, strain relief backshells, strain relief
bodies, strain relief saddles, special EMI ground rings, etc.
Backshells or strain reliefs: available in optional corrosion resisting steel; and
hardware: such as screws, washers, rivets, wire rope, sash chain, band straps, etc.
Elastomeric seals: such as O-rings, cable jacket seals, grommets, etc.
Anti-friction and thrust washers
Anti-rotation device
MATERIAL
Aluminum
SPECIFICATION
AMS-QQ-A-200
ASTMB221, 209
QQ-A-591
ASTMB85, 26
Corrosion Resisting Steel ASTMA582 (300 Series)
AMS-QQ-S-763
Silicone
ZZ-R-765, MIL-R-25988
Teflon
TFE
N/A
Corrosion Resistant
Material
Aluminum
BODY STRAP
Glenair offers an optional stainless steel body strap for
attaching protective covers as illustrated. To specify body
strap, add suffix letter C to the end of the part number. For
example 360AS001M1610M6C.
NOTES
On all length callouts, tolerance is ± .060 unless otherwise
specified.
Unless otherwise specified, the following other dimensional
tolerances will apply:
.xx = ± .03 (0.8)
.xxx = ± .015 (0.4)
Lengths = ± .060 (1.52)
Angles = ± 5°
Metric dimensions (mm) are indicated in parentheses
The live broadcast introducesthe continuous innovation of the STM32 ecosystem and the continuous addition of new components and functions. This training is mainly aimed at developers and university te...
eric_wangST Sensors & Low Power Wireless Technology Forum
[i=s]This post was last edited by symic on 2022-3-31 23:16[/i]Enter the next official Demo test, Webplayer_demo. It can play an mp3 audio file based on the http network application layer protocol. As ...
My board has a supercapacitor, and it goes into sleep after undervoltage and then resumes running after powering on again.
But the trouble came in the second half. When the voltage was too low, the sl...
Today, when I was using HPM6750EVKMINI, the download prompt "Unable to connect to localhost:3333" appeared. The download of the example program that worked well before also had this prompt.After the d...
"reg51.h" #include "intrins.h" unsigned char SystemError; sbit SCL= P1^6; //Define the port where the serial clock line is located and use it according to your own needs. sbit SDA= P1^7; //Define the...[Details]
High-resolution mixed-signal devices present an interesting challenge when you are trying to find the right voltage reference design. Although there is no one-size-fits-all solution for all voltage...[Details]
Blockchain is one of the most popular technologies in recent years. Its features such as distributed storage, decentralized computing, and data encryption provide new solutions for various applicatio...[Details]
ATmega88 has four XCKn (SCK) phase and polarity combinations related to serial data, which are determined by UCPHAn and UCPOLn. See Figure 77 for the timing diagram of data transmission. The shifting...[Details]
On July 27, data from Strategy Analytics showed that tablet application processor (AP) market shipments and revenue have grown for the fifth consecutive quarter. According to the SA Handset Componen...[Details]
Hunan Corun New Energy Co., Ltd. (hereinafter referred to as the "Company") is implementing strategic adjustments, returning to the main battery business, focusing on the layout of nickel-hydrogen,...[Details]
The surge in market demand and tight production capacity in the past two years have prompted major CIS manufacturers to actively respond. Previously, Sony transferred its CIS production capacity ...[Details]
Abstract: Switching power supply has a prominent electromagnetic interference problem due to its own working characteristics. Starting from the model of electromagnetic interference of switching po...[Details]
The chip can be driven by an external clock source, as shown in Figure 15. At this time, the CKSEL fuse bits must be programmed according to Table 15. After selecting this oscillator source, the s...[Details]
Early morning on February 18, it was reported that Intel CEO Pat Gelsinger is seeking to revive the company through a major business transformation. The company's management released performance expe...[Details]
According to @Kopite7kimi's Twitter revelation on Tuesday, Nvidia's RTX 40 series Ada Lovelace flagship GPU (AD102) will be equipped with up to 75 billion transistors - 2.65 times the previous genera...[Details]
1. How to reasonably configure the power supply of the cameras in the entire monitoring system?
Answer: This problem often embarrasses young and inexperienced engineers. When implementing man...[Details]
The LT®3597 is a 60V, triple-channel step-down LED driver capable of 10,000:1 digital PWM dimming at 100Hz and can drive up to 10 LEDs in each channel using fast NPN current sources. LED dimming ...[Details]
Convenient and efficient charging capabilities are key to the success of any battery electric vehicle (BEV). The more places people can charge, and the faster they can charge, the more likely peopl...[Details]
1 Introduction
Since the advent of the single-chip switching power supply in 1994, conditions have been created for the promotion and popularization of switching power supplies. The applic...[Details]