D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
a
FEATURES
Very High DC Precision
15 V max Offset Voltage
0.1 V/ C max Offset Voltage Drift
0.35 V p-p max Voltage Noise (0.1 Hz to 10 Hz}
8 V/ V min Open-Loop Gain
130 dB min CMRR
120 dB min PSRR
1 nA max Input Bias Current
AC Performance
0.3 V/ s Slew Rate
0.9 MHz Closed-Loop Bandwidth
Dual Version: AD708
Available in Tape and Reel in Accordance with
EIA-481A Standard
Ultralow Drift Op Amp
AD707
CONNECTION DIAGRAMS
TO-99 (H) Package
NULL
8
7
+V
S
NULL
1
–IN
2
6
OUTPUT
+IN
3
AD707
4
5
NC
–V
S
NC = NO CONNECT
NOTE: PIN 4 CONNECTED
TO CASE
Plastic (N) and
Cerdip (Q) Packages
NULL 1
–IN 2
+IN 3
8 NULL
7 +V
S
6 OUTPUT
NULL
–IN
+IN
–V
S
SOIC (R) Package
1
8
NULL
+V
S
OUTPUT
4
AD707
5
NC = NO CONNECT
NC
PRODUCT DESCRIPTION
–V
S
4
AD707
5 NC
The AD707 is a low cost, high precision op amp with state-of-
the-art performance that makes it ideal for a wide range of
precision applications. The offset voltage spec of less than 15
µV
is the best available in a bipolar op amp, and maximum input
offset current is 1.0 nA. The top grade is the first bipolar
monolithic op amp to offer a maximum offset voltage drift of
0.1
µV/°C,
and offset current drift and input bias current drift
are both specified at 25 pA/°C maximum.
The AD707’s open-loop gain is 8 V/µV minimum over the full
±
10 V output range when driving a 1 kΩ load. Maximum input
voltage noise is 350 nV p-p (0.1 Hz to 10 Hz). CMRR and
PSRR are 130 dB and 120 dB minimum, respectively.
The AD707 is available in versions specified over commercial,
industrial and military temperature ranges. It is offered in 8-pin
plastic mini-DIP, small outline (SOIC), hermetic cerdip and
hermetic TO-99 metal can packages. Chips, MIL-STD-883B,
Rev. C, and tape & reel parts are also available.
NC = NO CONNECT
APPLICATION HIGHLIGHTS
1. The AD707’s 13 V/µV typical open-loop gain and 140 dB
typical common-mode rejection ratio make it ideal for
precision instrumentation applications.
2. The precision of the AD707 makes tighter error budgets
possible at a lower cost.
3. The low offset voltage drift and low noise of the AD707 allow
the designer to amplify very small signals without sacrificing
overall system performance.
4. The AD707 can be used where chopper amplifiers are
required, but without the inherent noise and application
problems.
5. The AD707 is an improved pin-for-pin replacement for the
LT1001.
REV. B
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
© Analog Devices, Inc., 1995
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700
Fax: 617/326-8703
AD707–SPECIFICATIONS
(@ +25 C and
Conditions
INPUT OFFSET VOLTAGE
Initial
vs. Temperature
T
MIN
to T
MAX
Long-Term Stability
Adjustment Range
INPUT BIAS CURRENT
T
MIN
to T
MAX
Average Drift
OFFSET CURRENT
Average Drift
INPUT VOLTAGE NOISE
0.1 Hz to 10 Hz
f = 10 Hz
f = 100 Hz
f = 1 kHz
0.1 Hz to 10 Hz
f = 10 Hz
f = 100 Hz
f = 1 kHz
V
CM
=
±
13 V
T
MIN
to T
MAX
V
O
=
±
10 V
R
LOAD
≥
2 kΩ
T
MIN
to T
MAX
V
S
=
±
3 V to
±
18 V
T
MIN
to T
MAX
V
CM
= 0 V
T
MIN
to T
MAX
R2 = 20 kΩ (Figure 19)
15 V, unless otherwise noted)
AD707J/A
Min Typ Max
30
0.3
50
0.3
±
4
1.0
2.0
15
0.5
2.0
2
90
1.0
100
AD707K/B
Min Typ Max
10
0.1
15
0.3
±
4
0.5
1.5
15
0.3
1.0
1
25
0.3
45
Units
µV
µV/°C
µV
µV/month
mV
nA
nA
pA/°C
nA
nA
pA/°C
µV
p-p
nV/√Hz
nV/√Hz
nV/√Hz
pA p-p
pA/√Hz
pA/√Hz
pA/√Hz
dB
dB
V/µV
V/µV
dB
dB
MHz
V/µs
MΩ
GΩ
±
V
±
V
±
V
±
V
Ω
3
90
9.0
mA
mW
mW
2.5
4.0
40
2.0
4.0
40
2.0
4.0
40/40/40
1.5
2.0
25/25/35
0.23 0.6
10.3 28
10.0 13.0
9.6
11.0
14
0.32
0.14
0.12
120
120
3
3
110
110
0.4
0.12
24
140
140
13
13
130
130
0.9
0.3
100
200
14
13.0
12.5
13.0
60
2.5
75
7.5
3
90
9.0
35
0.9
0.27
0.18
130
120
5
3
115
110
0.4
0.12
45
0.23 0.6
10.3 18
10.0 12
9.6
11.0
14
0.32
0.14
0.12
140
140
13
13
130
130
0.9
0.3
200
300
14
13.0
12.5
13.0
60
2.5
75
7.5
30
0.8
0.23
0.17
INPUT CURRENT NOISE
COMMON-MODE
REJECTION RATIO
OPEN-LOOP GAIN
POWER SUPPLY
REJECTION RATIO
FREQUENCY RESPONSE
Closed-Loop Bandwidth
Slew Rate
INPUT RESISTANCE
Differential
Common Mode
OUTPUT CHARACTERISTICS
Voltage
R
LOAD
≥
10 kΩ
R
LOAD
≥
2 kΩ
R
LOAD
≥
1 kΩ
R
LOAD
≥
2 kΩ
T
MIN
to T
MAX
13.5
12.5
12.0
12.0
13.5
12.5
12.0
12.0
OPEN-LOOP OUTPUT
RESISTANCE
POWER SUPPLY
Current, Quiescent
Power Consumption, No Load
V
S
=
±
15 V
V
S
=
±
3 V
NOTES
All min and max specifications are guaranteed. Specifications in
boldface
are tested on all production units at final electrical test. Results from those tests are used to
calculate outgoing quality levels.
Specifications subject to change without notice.
–2–
REV. B
AD707
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
±
22 V
Internal Power Dissipation
2
. . . . . . . . . . . . . . . . . . . . 500 mW
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
±
V
S
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite
Differential Input Voltage . . . . . . . . . . . . . . . . . +V
S
and –V
S
Storage Temperature Range (Q, H) . . . . . . –65°C to +150°C
Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C
Lead Temperature Range (Soldering 60 sec) . . . . . . . +300°C
NOTES
1
Stresses above those listed under “Absolute Maximum Ratings” may cause
permanent damage to the device. Exposure to absolute maximum rating condi-
tions for extended periods may affect device reliability.
2
8-pin plastic package:
θ
JA
= 165°C/Watt; 8-pin cerdip package:
θ
JA
= 110°C/Watt;
8-pin small outline package:
θ
JA
= 155°C/Watt; 8-pin header package:
θ
JA
=
200°C/Watt.
ABSOLUTE MAXIMUM RATINGS
1
ORDERING GUIDE
Model
AD707AH
AD707AQ
AD707AR
AD707AR-REEL
AD707AR-REEL7
AD707BQ
AD707JN
AD707JR
AD707JR-REEL
AD707JR-REEL7
AD707KN
AD707KR
AD707KR-REEL
AD707KR-REEL7
Temperature
Range
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
Package
Description
8-Pin Metal Can
8-Pin Ceramic DIP
8-Pin Plastic SOIC
8-Pin Plastic SOIC
8-Pin Plastic SOIC
8-Pin Ceramic DIP
8-Pin Plastic DIP
8-Pin Plastic SOIC
8-Pin Plastic SOIC
8-Pin Plastic SOIC
8-Pin Plastic DIP
8-Pin Plastic SOIC
8-Pin Plastic SOIC
8-Pin Plastic SOIC
Package
Option
H-08A
Q-8
SO-8
SO-8
SO-8
Q-8
N-8
SO-8
SO-8
SO-8
N-8
SO-8
SO-8
SO-8
METALIZATION PHOTOGRAPH
Dimensions shown in inches and (mm).
Contact factory for latest dimensions.
NULL
8
+V
S
7
6
V
OUT
0.059
(1.51)
4
–V
S
1
NULL
2
–IN
3
+IN
0.110 (2.79)
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection.
Although the AD707 features proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
REV. B
–3–
AD707–Typical Characteristics
+V
S
COMMOM-MODE VOLTAGE LIMIT – V
(REFERRED TO SUPPLY VOLTAGES)
OUTPUT VOLTAGE SWING –
±
V
(REFERRED TO SUPPLY VOLTAGES)
–0.5
–1.0
–1.5
+V
+V
S
–0.5
+ V
OUT
OUTPUT VOLTAGE – V p -p
–1.0
–1.5
R
L
= 2kΩ
@ +25°C
35
30
25
20
±
15V SUPPLIES
15
10
5
0
10
+1.5
+1.0
–V
+0.5
–V
S
+1.5
+1.0
+0.5
–V
S
– V
OUT
0
5
10
15
20
SUPPLY VOLTAGE –
±V
25
0
5
10
15
20
SUPPLY VOLTAGE –
±V
25
1k
100
LOAD RESISTANCE –
Ω
10k
Figure 1. Input Common-Mode
Range vs. Supply Voltage
Figure 2. Output Voltage Swing
vs. Supply Voltage
Figure 3. Output Voltage Swing
vs. Load Resistance
4
100
256 UNITS
TESTED
80
– 55°C TO +125°C
70
60
50
40
30
20
10
90
100
I
O
= 1mA
10
OUTPUT IMPEDANCE –
Ω
CHANGE IN OFFSET – µV
3
NUMBER OF UNITS
1
A
V
= +1000
0.1
A
V
= +1
0.01
2
DUAL-IN-LINE PACKAGE
PLASTIC (N) or CERDIP (Q)
1
METAL CAN (H) PACKAGE
0.001
0
0
1
2
3
TIME AFTER POWER ON – Minutes
4
0
–0.4 –0.3 –0.2 –0.1
0
0.1 0.2 0.3
OFFSET VOLTAGE DRIFT – µV/°C
0.4
0.0001
0.1
1
10
100
1k
FREQUENCY – Hz
10k
100k
Figure 4. Offset Voltage Warm-Up
Drift
Figure 5. Typical Distribution of
Offset Voltage Drift
Figure 6. Output Impedance vs.
Frequency
40
INVERTING OR
NONINVERTING INPUT CURRENT – mA
45
INPUT VOLTAGE NOISE – nV/
√
Hz
40
VOLTAGE NOISE – 100nV/Div
35
30
25
20
15
10
5
0
0.01
0.1
1
10
FREQUENCY – Hz
100
I/F CORNER
0.7Hz
30
100
90
20
10
10
0%
0
0
1
10
DIFFERENTIAL VOLTAGE –
±V
100
TIME – 1sec/Div
Figure 7. Input Current vs.
Differential Input Voltage
Figure 8. Input Noise Spectral
Density
Figure 9. 0.1 Hz to 10 Hz Voltage
Noise
–4–
REV. B