D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
MC1741C
Internally Compensated,
High Performance
Operational Amplifier
The MC1741C was designed for use as a summing amplifier,
integrator, or amplifier with operating characteristics as a function of
the external feedback components.
•
No Frequency Compensation Required
•
Short Circuit Protection
•
Offset Voltage Null Capability
•
Wide Common Mode and Differential Voltage Ranges
•
Low Power Consumption
•
No Latch Up
http://onsemi.com
MARKING
DIAGRAMS
8
PDIP–8
P1 SUFFIX
CASE 626
1
1
8
8
1
SO–8
D SUFFIX
CASE 751
1
A
= Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
1741C
ALYW
MC1741CP1
AWL
YYWW
8
PIN CONNECTIONS
Offset Null
1
2
3
4
8
7
N.C.
V
CC
Output
Offset Null
Equivalent Circuit Schematic
(1/4 of Circuit Shown)
G
4.5 k
39 k
25
30 pF 7.5 k
Output
50
Offset
Null
1.0 k
50 k
1.0 k
5.0 k
50 k
50
V
EE
V
CC
Inv. Input
Noninv. Input
V
EE
+
6
5
Noninverting
Input
Inverting
Input
(Top View)
ORDERING INFORMATION
Device
MC1741CD
MC1741CDR2
MC1741CP1
Package
SO–8
SO–8
PDIP–8
Shipping
98 Units/Rail
2500 Tape & Reel
50 Units/Rail
©
Semiconductor Components Industries, LLC, 2000
1
April, 2000 – Rev. 6
Publication Order Number:
MC1741C/D
MC1741C
MAXIMUM RATINGS
Rating
Power Supply Voltage
Input Differential Voltage
Input Common Mode Voltage (Note 1.)
Output Short Circuit Duration (Note 2.)
Operating Ambient Temperature Range
Storage Temperature Range
Symbol
V
CC
, V
EE
V
ID
V
ICM
t
SC
T
A
T
stg
Value
±18
±30
±15
Continuous
0 to +70
–55 to +125
Unit
Vdc
V
V
–
°C
°C
1. For supply voltages less than +15 V, the absolute maximum input voltage is equal to the supply voltage.
2. Supply voltage equal to or less than 15 V.
ELECTRICAL CHARACTERISTICS
(V
CC
= +15 V, V
EE
= –15 V, T
A
= 25°C, unless otherwise noted.)
Characteristic
Input Offset Voltage (R
S
≤
10 k)
Input Offset Current
Input Bias Current
Input Resistance
Input Capacitance
Offset Voltage Adjustment Range
Common Mode Input Voltage Range
Large Signal Voltage Gain (V
O
=
±10
V, R
L
≥
2.0 k)
Output Resistance
Common Mode Rejection (R
S
≤
10 k)
Supply Voltage Rejection (R
S
≤
10 k)
Output Voltage Swing
(R
L
≥
10 k)
(R
L
≥
2.0 k)
Output Short Circuit Current
Supply Current
Power Consumption
Transient Response (Unity Gain, Noninverting)
(V
I
= 20 mV, R
L
≥
2.0 k, C
L
≤
100 pF) Rise Time
(V
I
= 20 mV, R
L
≥
2.0 k, C
L
≤
100 pF) Overshoot
(V
I
= 10 V, R
L
≥
2.0 k, C
L
≤
100 pF) Slew Rate
Symbol
V
IO
I
IO
I
IB
r
i
C
i
V
IOR
V
ICR
A
VOL
r
o
CMR
PSR
V
O
Min
–
–
–
0.3
–
–
±12
20
–
70
75
±12
±10
–
–
–
–
–
–
Typ
2.0
20
80
2.0
1.4
±15
±13
200
75
90
–
±14
±13
20
1.7
50
0.3
15
0.5
Max
6.0
200
500
–
–
–
–
–
–
–
–
–
–
–
2.8
85
–
–
–
mA
mA
mW
µs
%
V/µs
Unit
mV
nA
nA
MΩ
pF
mV
V
V/mV
Ω
dB
dB
V
I
SC
I
D
P
C
t
TLH
os
SR
ELECTRICAL CHARACTERISTICS
(V
CC
= +15 V, V
EE
= –15 V, T
A
= T
low
to T
high
, unless otherwise noted.)*
Characteristic
Input Offset Voltage (R
S
≤
10 kΩ)
Input Offset Current (T
A
= 0° to +70°C )
Input Bias Current (T
A
= 0° to +70°C )
Supply Voltage Rejection (R
S
≤
10 k)
Output Voltage Swing (R
L
≥
2.0 k)
Large Signal Voltage Gain (R
L
≥
2.0 k, V
O
=
±10
V)
* T
low
= 0°C
T
high
= 70°C
Symbol
V
IO
I
IO
I
IB
PSR
V
O
A
VOL
Min
–
–
–
75
±10
15
Typ
–
–
–
–
±13
–
Max
7.5
300
800
–
–
–
Unit
mV
nA
nA
dB
V
V/mV
http://onsemi.com
2
MC1741C
1000
en, INPUT NOISE (
µ
Vpk)
en, INPUT NOISE (
µ
Vpk)
BW = 1.0 Hz to 1.0 kHz
100
100
10
BW = 1.0 Hz to 1.0 kHz
10
1.0
0
10
100
1.0 k
10 k
R
S
, SOURCE RESISTANCE (Ω)
100 k
1.0 M
0.1
10
100
1.0
10 k
100 k
R
S
, SOURCE RESISTANCE (Ω)
1.0 M
Figure 1. Burst Noise versus Source Resistance
Figure 2. RMS Noise versus Source Resistance
10
en, OUTPUT NOISE (mVrms)
A
V
= 1000
1.0
100
10
0.1
1.0
0.01
10
100
1.0 k
10 k
100 k
1.0 M
e n, INPUT NOISE (
nV/
√
Hz
)
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0
10
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
A
V
= 10, R
S
= 100 k
Ω
R
S
, SOURCE RESISTANCE (Ω)
Figure 3. Output Noise versus Source Resistance
Figure 4. Spectral Noise Density
100 k
Positive
Threshold
Voltage
-
+
x500
x2
Low Pass
Filter
1.0 Hz to 1.0 kHz
Negative
Threshold
Voltage
+
-
To Pass / Fail
Indicator
+
-
100 k
1.0 k
100 k
Operational Amplifier
Under Test
Unlike conventional peak reading or RMS meters, this system was
especially designed to provide the quick response time essential
to burst (popcorn) noise testing.
The test time employed is 10 sec and the 20 mV peak limit
refers to the operational amplifier input thus eliminating errors
in the closed loop gain factor of the operational amplifier.
Figure 5. Burst Noise Test Circuit
http://onsemi.com
3
MC1741C
28
VO, OUTPUT VOLTAGE (Vpp )
24
Avol , VOLTAGE GAIN (dB)
20
16
12
8.0
4.0
0
10
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
(Voltage Follower)
THD < 5%
120
100
80
60
40
20
0
-20
1.0
10
100
1.0 k
10 k
100 k
1.0 M
10 M
f, FREQUENCY (Hz)
Figure 6. Power Bandwidth
(Large Signal Swing versus Frequency)
Figure 7. Open Loop Frequency Response
15
VO, OUTPUT VOLTAGE (Vpp )
VO, OUTPUT VOLTAGE (Vpp )
13
11
9.0
7.0
5.0
3.0
1.0
100
200
500 700 1.0 k
2.0 k
±9.0
V
±6.0
V
±15
V Supplies
±12
V
-15
-13
-11
-9.0
-7.0
-5.0
-3.0
-1.0
100
200
500 700 1.0 k
2.0 k
±12
V
±9.0
V
±6.0
V
5.0 k 7.0 k 10
±15
V Supplies
5.0 k 7.0 k 10 k
R
L,
LOAD RESISTANCE (Ω)
R
L,
LOAD RESISTANCE (Ω)
Figure 8. Positive Output Voltage Swing
versus Load Resistance
Figure 9. Negative Output Voltage Swing
versus Load Resistance
28
26
24
22
20
18
16
14
12
10
8.0
6.0
4.0
2.0
0
VO, OUTPUT VOLTAGE SWING (Vpp )
30 V Supply
27 V
24 V
21 V
18 V
15 V
12 V
9.0 V
6.0 V
5.0 V
1.0 2.0
V
in
200 k
50 k
50 k
3.0 4.0
5.0 6.0 7.0
R
L,
LOAD RESISTANCE (kΩ)
8.0
9.0
10
200 k
3
2
100
µF
1.0 k
10 k
V
CC
-
+
7
MC1741
100
µF
R
L
0
4
Figure 10. Output Voltage Swing versus
Load Resistance (Single Supply Operation)
Figure 11. Single Supply Inverting Amplifier
http://onsemi.com
4