D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
a
Micropower, Step-Up/Step-Down Switching
Regulator; Adjustable and Fixed 3.3 V, 5 V, 12 V
ADP1110
FUNCTIONAL BLOCK DIAGRAMS
SET
FEATURES
Operates at Supply Voltages From 1.0 V to 30 V
Step-Up or Step-Down Mode
Minimal External Components Required
Low-Battery Detector
User-Adjustable Current Limiting
Fixed or Adjustable Output Voltage Versions
8-Pin DIP or SO-8 Package
APPLICATIONS
Cellular Telephones
Single-Cell to 5 V Converters
Laptop and Palmtop Computers
Pagers
Cameras
Battery Backup Supplies
Portable Instruments
Laser Diode Drivers
Hand-Held Inventory Computers
ADP1110
A2
V
IN
GAIN BLOCK/
ERROR AMP
I
LIM
SW1
220mV
REFERENCE
A0
A1
OSCILLATOR
DRIVER
Q1
COMPARATOR
R1
R2
300kΩ
GND
SENSE
SW2
ADP1110 Block Diagram—Fixed Output Version
SET
ADP1110
A2
V
IN
GAIN BLOCK/
ERROR AMP
A0
I
LIM
SW1
220mV
REFERENCE
OSCILLATOR
DRIVER
GENERAL DESCRIPTION
The ADP1110 is part of a family of step-up/step-down switch-
ing regulators that operate from an input voltage supply as little
as 1.0 V. This very low input voltage allows the ADP1110 to be
used in applications that use a single cell as the primary power
source.
The ADP1110 can be configured to operate in either step-up or
step-down mode, but for input voltages greater than 3 V, the
ADP1111 would be a more effective solution.
An auxiliary gain amplifier can serve as a low battery detector or
as a linear regulator.
The quiescent current of 300
µA
makes the ADP1110 useful in
remote or battery powered applications.
A1
Q1
COMPARATOR
GND
FB
SW2
ADP1110 Block Diagram—Adjustable Output Version
The 70 kHz frequency operation also allows for the use of
surface-mount external capacitors and inductors.
Battery protection circuitry limits the effect of reverse current to
safe levels at reverse voltages up to 1.6 V.
REV. 0
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700
World Wide Web Site: http://www.analog.com
Fax: 617/326-8703
© Analog Devices, Inc., 1996
ADP1110–SPECIFICATIONS
(0 C to +70 C, V = 1.5 V unless otherwise noted)
IN
Parameter
QUIESCENT CURRENT
INPUT VOLTAGE
COMPARATOR TRIP POINT VOLTAGE
OUTPUT SENSE VOLTAGE
Conditions
Switch Off
Step-Up Mode
Step-Down Mode
ADP1110
1
ADP1110-3.3
2
ADP1110-5
2
ADP1110-12
2
ADP1110
ADP1110-3.3
ADP1110-5
ADP1110-12
V
S
I
Q
V
IN
Min
Typ
300
Max
Units
µA
1.15
210
220
3.30
5.00
12.00
4
66
90
200
12.6
30
230
3.47
5.25
12.6
8
130
180
400
90
78
12.5
240
500
0.4
V
V
mV
V
V
V
mV
mV
mV
mV
kHz
%
µs
nA
nA
V
%/V
%/V
mV
mV
mV
mV
mV
V/V
mA
%/°C
V
OUT
3.13
4.75
11.4
COMPARATOR HYSTERESIS
OUTPUT HYSTERESIS
OSCILLATOR FREQUENCY
DUTY CYCLE
SWITCH ON TIME
FEEDBACK PIN BIAS CURRENT
SET PIN BIAS CURRENT
A0 OUTPUT LOW
REFERENCE LINE REGULATION
SWITCH SATURATION VOLTAGE
STEP-UP MODE
ADP1110 V
FB
= 0 V
V
SET
= V
REF
I
AO
= 300
µA
V
SET
= 150 mV
1.0 V
≤
V
IN
≤
1.5 V
1.5 V
≤
V
IN
≤
12 V
V
IN
= 1.5 V, I
SW
= 400 mA, +25°C
T
MIN
to T
MAX
V
IN
= 1.5 V, I
SW
= 500 mA, +25°C
T
MIN
to T
MAX
V
IN
= 5 V, I
SW
= 1 A, +25°C
R
L
= 100 kΩ
3
T
A
= +25°C
4
V
IN,
T
A
= +25°C
Measured at SW1 Pin,
T
A
= +25°C
I
SW1
≤
10
µA,
Switch Off
T
A
= +25°C
Full Load (V
FB
< V
REF
)
f
OSC
DC
t
ON
I
FB
I
SET
V
AO
52
62
7.5
70
69
10
150
300
0.15
0.35
0.05
0.1
500
600
650
750
1000
V
CESAT
300
400
700
A2 ERROR AMP GAIN
REVERSE BATTERY CURRENT
CURRENT LIMIT TEMPERATURE
COEFFICIENT
SWITCH OFF LEAKAGE CURRENT
MAXIMUM EXCURSION BELOW GND
A
V
I
REV
1000
5000
750
–0.3
I
LEAK
V
SW2
1
–400
10
–350
µA
mV
NOTES
1
This specification guarantees that both the high and low trip point of the comparator fall within the 210 mV to 230 mV range.
2
This specification guarantees that the output voltage of the fixed versions will always fall within the specified range. The waveform at the sense pin will exhibit a saw-
tooth shape due to the comparator hysteresis.
3
100 kΩ resistor connected between a 5 V source and the AO pin.
4
The ADP1110 is guaranteed to withstand continuous application of +1.6 V applied to the GND and SW2 pins while V
IN
, I
LIM
, and SW1 pins are grounded.
5
All limits at temperature extremes are guaranteed via correlation using standard statistical quality control methods.
Specifications subject to change without notice.
–2–
REV. 0
ADP1110
ABSOLUTE MAXIMUM RATINGS
PIN CONFIGURATIONS
8-Lead Plastic DIP
(N-8)
I
LIM
1
V
IN
2
8 FB (SENSE)*
Input Supply Voltage, Step-Up Mode . . . . . . . . . . . . . . . 15 V
Input Supply Voltage, Step-Down Mode . . . . . . . . . . . . . 36 V
SW1 Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 V
SW2 Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V
IN
Feedback Pin Voltage (ADP1110) . . . . . . . . . . . . . . . . . . 5.5 V
Switch Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 A
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . 500 mW
Operating Temperature Range . . . . . . . . . . . . . 0°C to +70°C
Storage Temperature Range . . . . . . . . . . . . . –65°C to 150°C
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . . 300°C
TYPICAL APPLICATION
47µH
5V
8-Lead SOIC
(SO-8)
I
LIM
V
IN
1
2
8 FB (SENSE)*
ADP1110
7 SET
A0
ADP1110
TOP VIEW
(Not to Scale)
7 SET
6 A0
5 GND
TOP VIEW
SW1 3 (Not to Scale) 6
SW2 4
SW1 3
SW2 4
5 GND
T
JMAX
= 90
o
,
θ
JA
= 130
o
C/W
*FIXED VERSIONS
T
JMAX
= 90
o
,
θ
JA
= 150
o
C/W
*FIXED VERSIONS
PIN DESCRIPTION
1
I
LIM
1.5V
AA CELL*
2
V
IN
Mnemonic
I
LIM
Function
For normal conditions this pin is connected to
V
IN
. When lower current is required, a resistor
should be connected between I
LIM
and V
IN
.
Limiting the switch current to 400 mA is
achieved by connecting a 220
Ω
resistor.
Input Voltage.
Collector Node of Power Transistor. For step-
down configuration, connect to V
IN
. For step-
up configuration, connect to an inductor/diode.
Emitter Node of Power Transistor. For step-
down configuration, connect to inductor/diode.
For step-up configuration, connect to ground.
Do not allow this pin to go more than a diode
drop below ground.
Ground.
Auxiliary Gain (GB) Output. The open collec-
tor can sink 300
µA.
It can be left open if unused.
Gain Amplifier Input. The amplifier has posi-
tive input connected to SET pin and negative
input connected to 220 mV reference. It can be
left open if unused.
On the ADP1110 (adjustable) version this pin
is connected to the comparator input. On the
ADP1110-3.3, ADP1110-5 and ADP1110-12,
the pin goes directly to the internal application
resistor that set output voltage.
SW1 3
ADP1110-5
SENSE 8
GND
5
SW2
4
15µF
TANTALUM
OPERATES WITH CELL VOLTAGE
≥1.0V
*ADD 10µF DECOUPLING CAPACITOR IF BATTERY IS
*MORE
THAN 2' AWAY FROM ADP1110.
V
IN
SW1
Figure 1. 1.5 V to 5 V Converter
SW2
ORDERING GUIDE
Model
ADP1110AN
ADP1110AR
ADP1110AN-3.3
ADP1110AR-3.3
ADP1110AN-5
ADP1110AR-5
ADP1110AN-12
ADP1110AR-12
Output Voltage
ADJ
ADJ
3.3 V
3.3 V
5V
5V
12 V
12 V
Package
N-8
SO-8
N-8
SO-8
N-8
SO-8
N-8
SO-8
GND
AO
SET
FB/SENSE
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection.
Although the ADP1110 features proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
REV. 0
–3–
ADP1110-Typical Characteristics
76
1.4
1.2
1
0.8
0.6
0.4
0.2
0
0.1
V
IN
= +1.2V
V
IN
= +3V
V
IN
= +1V
V
IN
= +5V
V
IN
= +1.5V
V
IN
= +2V
74
OSCILLATOR FREQUENCY – kHz
SATURATION VOLTAGE – V
72
OSCILLATOR FREQUENCY
70
68
66
64
62
0.2
0.4
0.5
0.6
0.8
1
I
SWITCH
CURRENT – A
1.2
1.25
1.4
60
2
4
6
8
10
12 15
18
INPUT VOLTAGE – V
21
24
27
30
Figure 2. Saturation Voltage vs. I
SWITCH
Current in Step-Up
Mode
Figure 5. Oscillator Frequency vs. Input Voltage
2
1.8
1.6
1.4
ON VOLTAGE – V
1.9
1.7
1.5
SWITCH CURRENT – A
V
IN
= +12V
1.3
1.1
0.9
0.7
0.5
0.3
0.1
1
1.2
1
0.8
0.6
0.4
0.2
0
0.1
0.2
0.6
I
SWITCH
CURRENT – A
0.4
0.8
0.9
STEP-DOWN WITH
V = +12V
10
R
LIM
–
Ω
100
1000
Figure 3. Switch ON Voltage vs. I
SWITCH
Current In Step-
Down Mode
Figure 6. Maximum Switch Current vs. R
LIM
1800
1600
QUIESCENT CURRENT – µA
1400
1200
QUIESCENT CURRENT
1000
800
600
400
200
0
1
3
6
9
12
15
18
21
24
27
30
INPUT VOLTAGE – V
SWITCH CURRENT – A
1.5
1.3
1.1
0.9
0.7
STEP-UP MODE
WITH V
≤
+5V
0.5
0.3
0.1
1
10
R
LIM
–
Ω
100
1000
Figure 4. Quiescent Current vs. Input Voltage
Figure 7. Maximum Switch Current vs. R
LIM
–4–
REV. 0