PD - 97386
PDP TRENCH IGBT
Features
l
Advanced Trench IGBT Technology
l
Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM
)
l
Low V
CE(on)
and Energy per Pulse (E
PULSE
for improved panel efficiency
l
High repetitive peak current capability
l
Lead Free package
IRG6IC30UPbF
Key Parameters
V
CE
min
V
CE(ON)
typ. @ I
C
= 25A
I
RP
max @ T
C
= 25°C
T
J
max
c
600
1.50
250
150
V
V
A
°C
C
G
E
E
C
G
n-channel
G
Gate
C
Collector
TO-220AB
Full-Pak
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low V
CE(on)
and low E
PULSETM
rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
V
GE
I
C
@ T
C
= 25°C
I
C
@ T
C
= 100°C
I
RP
@ T
C
= 25°C
P
D
@T
C
= 25°C
P
D
@T
C
= 100°C
T
J
T
STG
Gate-to-Emitter Voltage
Continuous Collector Current, V
GE
@ 15V
Continuous Collector, V
GE
@ 15V
Repetitive Peak Current
Power Dissipation
Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
Max.
±30
25
12
250
37
15
0.30
-40 to + 150
300
Units
V
A
c
W
W/°C
°C
10lb in (1.1N m)
x
x
N
Thermal Resistance
R
θJC
R
θJA
Junction-to-Case
Junction-to-Ambient
d
Parameter
Typ.
–––
–––
Max.
3.1
65
Units
°C/W
d
www.irf.com
1
03/31/09
IRG6IC30UPbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
CES
V
(BR)ECS
∆ΒV
CES
/∆T
J
Collector-to-Emitter Breakdown Voltage
Emitter-to-Collector Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Min. Typ. Max. Units
Conditions
V
GE
= 0V, I
CE
= 1.0mA
e
600
15
–––
–––
–––
–––
–––
0.49
1.29
1.50
1.73
2.16
2.88
1.51
–––
-8.9
2.0
10
40
150
–––
–––
32
79
30
20
16
160
120
18
17
190
240
–––
1020
1150
–––
–––
–––
–––
1.92
–––
–––
–––
–––
V
V V
GE
= 0V, I
CE
= 1.0A
V/°C Reference to 25°C, I
CE
= 1mA
V
GE
= 15V, I
CE
= 12A
V
GE
= 15V, I
CE
V
V
GE
= 15V, I
CE
V
GE
= 15V, I
CE
V
GE
= 15V, I
CE
V
CE(on)
Static Collector-to-Emitter Voltage
–––
–––
–––
2.6
–––
–––
–––
–––
–––
V
GE(th)
∆V
GE(th)
/∆T
J
I
CES
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Collector-to-Emitter Leakage Current
5.0
V
––– mV/°C
20
–––
100
–––
100
-100
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
ns
µJ
ns
nA
S
nC
µA
V
GE
= 15V, I
CE
= 25A, T
J
= 150°C
V
CE
= V
GE
, I
CE
= 500µA
e
= 25A
e
= 40A
e
= 70A
e
= 120A
e
e
V
CE
= 600V, V
GE
= 0V
V
CE
= 600V, V
GE
= 0V, T
J
= 100°C
V
CE
= 600V, V
GE
= 0V, T
J
= 125°C
V
CE
= 600V, V
GE
= 0V, T
J
= 150°C
V
GE
= 30V
V
GE
= -30V
V
CE
= 25V, I
CE
= 25A
V
CE
= 400V, I
C
= 25A, V
GE
= 15V
I
C
= 25A, V
CC
= 400V
R
G
= 10Ω, L=200µH
T
J
= 25°C
I
C
= 25A, V
CC
= 400V
I
GES
g
fe
Q
g
Q
gc
t
d(on)
t
r
t
d(off)
t
f
t
d(on)
t
r
t
d(off)
t
f
t
st
E
PULSE
Gate-to-Emitter Forward Leakage
Gate-to-Emitter Reverse Leakage
Forward Transconductance
Total Gate Charge
Gate-to-Collector Charge
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Shoot Through Blocking Time
Energy per Pulse
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
100
–––
–––
e
ns
R
G
= 10Ω, L=200µH
T
J
= 150°C
V
CC
= 240V, V
GE
= 15V, R
G
= 5.1Ω
L = 220nH, C= 0.40µF, V
GE
= 15V
V
CC
= 240V, R
G
= 5.1Ω, T
J
= 25°C
L = 220nH, C= 0.40µF, V
GE
= 15V
ESD
C
ies
C
oes
C
res
L
C
L
E
Human Body Model
Machine Model
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Collector Inductance
Internal Emitter Inductance
–––
–––
–––
–––
–––
V
CC
= 240V, R
G
= 5.1Ω, T
J
= 100°C
Class 2
(Per JEDEC standard JESD22-A114)
Class B
(Per EIA/JEDEC standard EIA/JESD22-A115)
V
GE
= 0V
2390 –––
85
–––
pF V
CE
= 30V
58
4.5
7.5
–––
–––
nH
–––
ƒ = 1.0MHz,
Between lead,
6mm (0.25in.)
from package
and center of die contact
See Fig.13
Notes:
Half sine wave with duty cycle <= 0.02, ton=1.0µsec.
R
θ
is measured at
T
J
of approximately 90°C.
Pulse width
≤
400µs; duty cycle
≤
2%.
2
www.irf.com
IRG6IC30UPbF
500
450
400
350
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
500
450
400
350
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
ICE (A)
250
200
150
100
50
0
0
ICE (A)
4
6
8
10
300
300
250
200
150
100
50
0
2
0
2
4
6
8
10
VCE (V)
VCE (V)
Fig 1.
Typical Output Characteristics @ 25°C
500
450
400
350
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
Fig 2.
Typical Output Characteristics @ 75°C
500
450
400
350
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
ICE (A)
250
200
150
100
50
0
0
ICE (A)
6
8
10
12
14
300
300
250
200
150
100
50
0
2
4
0
2
4
6
8
10
12
14
VCE (V)
VCE (V)
Fig 3.
Typical Output Characteristics @ 125°C
500
T J = 25°C
Fig 4.
Typical Output Characteristics @ 150°C
20
VCE, Voltage Collector-to-Emitter (V)
ICE, Collector-to-Emitter Current (A)
450
400
350
300
250
200
150
100
50
0
0
5
18
16
14
12
10
8
6
4
2
0
0
5
10
IC = 25A
T J = 25°C
T J = 150°C
T J = 150°C
10
15
20
15
20
VGE, Gate-to-Emitter Voltage (V)
VGE, Voltage Gate-to-Emitter (V)
Fig 5.
Typical Transfer Characteristics
Fig 6.
V
CE(ON)
vs. Gate Voltage
www.irf.com
3
IRG6IC30UPbF
30
25
20
250
Repetitive Peak Current (A)
200
150
IC (A)
15
10
5
0
0
25
50
75
T C (°C)
100
125
150
100
ton= 1.0µs
Duty cycle <= 0.02
Half Sine Wave
50
0
25
50
75
100
125
150
Case Temperature (°C)
Fig 7.
Maximum Collector Current vs. Case Temperature
1200
1100
V CC = 240V
L = 220nH
C = variable
100°C
Fig 8.
Typical Repetitive Peak Current vs. Case Temperature
1200
1100
L = 220nH
C = 0.4µF
Energy per Pulse (µJ)
Energy per Pulse (µJ)
1000
900
800
700
600
500
400
170
1000
100°C
900
800
700
600
25°C
25°C
180
190
200
210
220
230
195 200 205 210 215 220 225 230 235 240
VCE, Collector-to-Emitter Voltage (V)
IC, Peak Collector Current (A)
Fig 9.
Typical E
PULSE
vs. Collector Current
1600
V CC = 240V
1400
Energy per Pulse (µJ)
Fig 10.
Typical E
PULSE
vs. Collector-to-Emitter Voltage
1000
L = 220nH
t = 1µs half sine
C= 0.4µF
100
IC (A)
1200
1000
800
C= 0.2µF
600
400
25
50
75
100
125
150
TJ, Temperature (ºC)
100µsec
1msec
10µsec
C= 0.3µF
10
Tc = 25°C
Tj = 175°C
Single Pulse
1
1
10
VCE (V)
100
1000
Fig 11.
E
PULSE
vs. Temperature
Fig 12.
Forrward Bias Safe Operating Area
4
www.irf.com
IRG6IC30UPbF
100000
C oes = Cce + C gc
VGE, Gate-to-Emitter Voltage (V)
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd, C ce SHORTED
C res = C gc
16
14
12
10
8
6
4
2
0
IC = 25A
VCES = 120V
VCES = 300V
VCES = 400V
10000
Capacitance (pF)
1000
Cies
100
Cres
10
0
100
Coes
200
300
400
500
0
20
40
60
80
100
VCE, Collector-toEmitter-Voltage(V)
Q G, Total Gate Charge (nC)
Fig 13.
Typical Capacitance vs. Collector-to-Emitter Voltage
Fig 14.
Typical Gate Charge vs. Gate-to-Emitter Voltage
10
D = 0.50
0.20
0.10
0.05
0.02
0.01
τ
J
τ
J
τ
1
R
1
R
1
τ
2
R
2
R
2
R
3
R
3
τ
3
R
4
R
4
τ
C
τ
τ
1
τ
2
τ
3
τ
4
τ
4
Thermal Response ( Z thJC )
1
0.1
Ri (°C/W)
0.21623
0.41114
1.31259
1.41309
0.000302
0.002861
0.179036
2.673
τi
(sec)
0.01
0.001
SINGLE PULSE
( THERMAL RESPONSE )
Ci=
τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
10
100
0.0001
1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 15.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5