D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
Pressure
Freescale Semiconductor
Integrated Silicon Pressure Sensor
On-Chip Signal Conditioned,
Temperature Compensated and
Calibrated
The MPxx5004 series piezoresistive transducer is a state-of-the-art
monolithic silicon pressure sensor designed for a wide range of applications,
but particularly those employing a microcontroller or microprocessor with A/D
inputs. This sensor combines a highly sensitive implanted strain gauge with
advanced micromachining techniques, thin-film metallization, and bipolar
processing to provide an accurate, high level analog output signal that is
proportional to the applied pressure.
MPXV5004G
Rev 12, 09/2009
MPXV5004
MPVZ5004
Series
0 to 3.92 kPa
(0 to 400 mm H
2
O)
1.0 to 4.9 V Output
Application Examples
• Washing Machine Water Level
• Ideally Suited for Microprocessor or
Microcontroller-Based Systems
• Appliance Liquid Level and Pressure
Measurement
• Respiratory Equipment
Features
•
•
•
•
•
•
1.5% Maximum Error for 0 to 100 mm H
2
O over +10° to +60°C with Auto Zero
2.5% Maximum Error for 100 to 400 mm H
2
O over +10° to +60°C with Auto Zero
6.25% Maximum Error for 0 to 400 mm H
2
O over +10° to +60°C without Auto Zero
Temperature Compensated over 10° to 60°C
Available in Gauge Surface Mount (SMT) or Through-Hole (DIP) Configurations
Durable Thermoplastic (PPS) Package
ORDERING INFORMATION
Device Name
Case
No.
1351
482A
482A
482C
1369
1369
1368
482
482
482B
482A
1735
1560
•
•
•
•
•
•
•
•
•
•
•
•
# of Ports
None
Single
Dual
•
•
•
•
•
•
•
•
•
•
•
•
•
Gauge
Pressure Type
Differential
•
Absolute
Device
Marking
MPXV5004DP
MPXV5004G
MPXV5004G
MPXV5004G
MPXV5004GP
MPXV5004GP
MPXV5004GVP
MPVZ5004G
MPVZ5004G
MPVZ5004G
MPVZ5004G
MZ5004GW
MZ5004GW
Small Outline Package (MPXV5004 Series)
MPXV5004DP
MPXV5004GC6T1
MPXV5004GC6U
MPXV5004GC7U
MPXV5004GP
MPXV5004GPT1
MPXV5004GVP
MPVZ5004G6T1
MPVZ5004G6U
MPVZ5004G7U
MPVZ5004GC6U
MPVZ5004GW6U
MPVZ5004GW7U
Small Outline Package (Media Resistant Gel) (MPVZ5004 Series)
© Freescale Semiconductor, Inc., 2006-2009. All rights reserved.
Pressure
SMALL OUTLINE PACKAGES THROUGH-HOLE
MPVZ5004G7U
CASE 482B-03
MPXV5004GC7U
CASE 482C-03
MPVZ5004GW7U
CASE 1560-02
SMALL OUTLINE PACKAGES SURFACE MOUNT
MPVZ5004G6U/6T1
CASE 482-01
MPXV5004G6U/6T1, MPVZ5004GC6U
CASE 482A-01
MPXV5004DP
CASE 1351-01
MPXV5004GVP
CASE 1368-01
MPVZ5004GW6U
CASE 1735-01
MPXV5004GP/GPT1
CASE 1369-01
MPXV5004G
2
Sensors
Freescale Semiconductor
Pressure
Operating Characteristics
Table 1. Operating Characteristics
(V
S
= 5.0 V
DC
, T
A
= 25°C unless otherwise noted, P1 > P2)
Characteristic
Pressure Range
Supply Voltage
(1)
Supply Current
Span @ 306 mm H
2
O (3 kPa)
(2)
Full Scale Span @ 400 mm H
2
O (3.92 kPa)
(2)
Offset
(3)
Sensitivity
Accuracy
(4) (5)
0 to 100 mm H
2
O (10 to 60°C)
100 to 400 mm H
2
O (10 to 60°C)
0 to 400 mm H
2
O (10 to 60°C
1. Device is ratiometric within this specified excitation range.
2. Span is defined as the algebraic difference between the output voltage at specified pressure and the output voltage at the minimum rated
pressure.
3. Offset (V
off
) is defined as the output voltage at the minimum rated pressure.
4. Accuracy (error budget) consists of the following:
Linearity:Output deviation from a straight line relationship with pressure over the specified pressure range.
Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and
from the minimum or maximum operating temperature points, with zero differential pressure applied.
Pressure Hysteresis:Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or
maximum rated pressure, at 25°C.
Offset Stability:Output deviation, after 1000 temperature cycles, -30 to 100°C, and 1.5 million pressure cycles, with minimum rated pressure
applied.
TcSpan:Output deviation over the temperature range of 10 to 60°C, relative to 25°C.
TcOffset:Output deviation with minimum rated pressure applied, over the temperature range of 10 to 60°C, relative to 25°C.
Variation from Nominal:The variation from nominal values, for Offset or Full Scale Span, as a percent of V
FSS
, at 25°C.
5. Auto Zero at Factory Installation: Due to the sensitivity of the MPVZ5004G, external mechanical stresses and mounting position can affect
the zero pressure output reading. Autozeroing is defined as storing the zero pressure output reading and subtracting this from the device's
output during normal operations. Reference AN1636 for specific information. The specified accuracy assumes a maximum temperature
change of ±5°C between autozero and measurement.
Symbol
P
OP
V
S
I
S
V
FSS
V
OFF
V/P
—
—
—
Min
0
4.75
—
—
—
0.75
—
—
—
—
Typ
—
5.0
—
3.0
4.0
1.0
1.0
—
—
—
Max
3.92
400
5.25
10
—
—
1.25
—
±1.5
±2.5
±6.25
Units
kPa
mm H
2
O
V
DC
mAdc
V
V
V/kPa
%V
FSS
with auto
zero
%V
FSS
with auto
zero
%V
FSS
without
auto zero
MPXV5004G
Sensors
Freescale Semiconductor
3
Pressure
Maximum Ratings
Table 2. Maximum Ratings
(1)
Rating
Maximum Pressure (P1 > P2)
Storage Temperature
Operating Temperature
Symbol
P
MAX
T
STG
T
A
Value
16
–30 to +100
0 to +85
Unit
kPa
°C
°C
1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
Figure 1
shows a block diagram of the internal circuitry integrated on a pressure sensor chip.
V
S
2
Sensing
Element
Thin Film
Temperature
Compensation
and Calibration
Circuitry
Gain Stage #2
and
Ground
Reference
Shift Circuitry
4
V
OUT
3
GND
Pins 1, 5, 6, 7, and 8 are NO CONNECTS
for small outline package device.
Figure 1. Integrated Pressure Sensor Schematic
On-chip Temperature Compensation and Calibration
The performance over temperature is achieved by
integrating the shear-stress strain gauge, temperature
compensation, calibration and signal conditioning circuitry
onto a single monolithic chip.
Figure 2
illustrates the gauge configuration in the basic
chip carrier (Case 482). A fluorosilicone gel isolates the die
surface and wire bonds from the environment, while allowing
the pressure signal to be transmitted to the silicon diaphragm.
The MPxx5004G series sensor operating characteristics
are based on use of dry air as pressure media. Media, other
than dry air, may have adverse effects on sensor
performance and long-term reliability. Internal reliability and
Fluorosilicone
Gel Die Coat
P1
Wire Bond
Thermoplastic
Case
qualification test for dry air, and other media, are available
from the factory. Contact the factory for information regarding
media tolerance in your application.
Figure 3
shows the recommended decoupling circuit for
interfacing the output of the MPxx5004G to the A/D input of
the microprocessor or microcontroller. Proper decoupling of
the power supply is recommended.
Typical, minimum and maximum output curves are shown
for operation over a temperature range of 10°C to 60°C using
the decoupling circuit shown in
Figure 3.
The output will
saturate outside of the specified pressure range.
Stainless
Steel Cap
Die
Lead Frame
P2
Differential Sensing Element
Die Bond
Figure 2. Cross-Sectional Diagram (Not to Scale)
MPXV5004G
4
Sensors
Freescale Semiconductor