D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
2N6027, 2N6028
Preferred Device
Programmable
Unijunction Transistor
Programmable Unijunction
Transistor Triggers
http://onsemi.com
Designed to enable the engineer to “program’’ unijunction
characteristics such as R
BB
,
h,
I
V
, and I
P
by merely selecting
two resistor values. Application includes thyristor−trigger, oscillator,
pulse and timing circuits. These devices may also be used in special
thyristor applications due to the availability of an anode gate. Supplied
in an inexpensive TO−92 plastic package for high−volume
requirements, this package is readily adaptable for use in automatic
insertion equipment.
Features
PUTs
40 VOLTS, 300 mW
G
A
K
•
•
•
•
•
•
Programmable − R
BB
,
h,
I
V
and I
P
Low On−State Voltage − 1.5 V Maximum @ I
F
= 50 mA
Low Gate to Anode Leakage Current − 10 nA Maximum
High Peak Output Voltage − 11 V Typical
Low Offset Voltage − 0.35 V Typical (R
G
= 10 kW)
Pb−Free Packages are Available*
1
TO−92 (TO−226AA)
CASE 029
STYLE 16
2
3
MARKING DIAGRAM
2N
602x
AYWW
G
G
= Device Code
x = 7 or 8
A
= Assembly Location
Y
= Year
WW
= Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
2N602x
PIN ASSIGNMENT
1
2
3
Anode
Gate
Cathode
ORDERING INFORMATION
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
©
Semiconductor Components Industries, LLC, 2006
See detailed ordering and shipping information in the package
dimensions section on page 5 of this data sheet.
Preferred
devices are recommended choices for future use
and best overall value.
1
May, 2006 − Rev.6
Publication Order Number:
2N6027/D
2N6027, 2N6028
MAXIMUM RATINGS
(T
J
= 25°C unless otherwise noted)
Rating
Power Dissipation*
Derate Above 25°C
DC Forward Anode Current*
Derate Above 25°C
DC Gate Current*
Repetitive Peak Forward Current
100
m
s Pulse Width, 1% Duty Cycle
20
m
s Pulse Width, 1% Duty Cycle*
Non−Repetitive Peak Forward Current
10
m
s Pulse Width
Gate to Cathode Forward Voltage*
Gate to Cathode Reverse Voltage*
Gate to Anode Reverse Voltage*
Anode to Cathode Voltage* (Note 1)
Capacitive Discharge Energy (Note 2)
Power Dissipation (Note 3)
Operating Temperature
Junction Temperature
Storage Temperature Range
Symbol
P
F
1/q
JA
I
T
I
G
I
TRM
1.0
2.0
I
TSM
V
GKF
V
GKR
V
GAR
V
AK
E
P
D
T
OPR
T
J
T
stg
5.0
40
*5.0
40
±40
250
300
−50 to +100
−50 to +125
−55 to +150
A
V
V
V
V
mJ
mW
°C
°C
°C
Value
300
4.0
150
2.67
"50
Unit
mW
mW/°C
mA
mA/°C
mA
A
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
*Indicates JEDEC Registered Data
1. Anode positive, R
GA
= 1000
W
Anode negative, R
GA
= open
2. E = 0.5
CV
2
capacitor discharge energy limiting resistor and repetition.
3. Derate current and power above 25°C.
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction−to−Case
Thermal Resistance, Junction−to−Ambient
Maximum Lead Temperature for Soldering Purposes
(t1/16″ from case, 10 seconds maximum)
Symbol
R
qJC
R
qJA
T
L
Max
75
200
260
Unit
°C/W
°C/W
°C
http://onsemi.com
2
2N6027, 2N6028
ELECTRICAL CHARACTERISTICS
(T
C
= 25°C unless otherwise noted)
Characteristic
Peak Current*
(V
S
= 10 Vdc, R
G
= 1 MW)
(V
S
= 10 Vdc, R
G
= 10 kW)
Offset Voltage*
(V
S
= 10 Vdc, R
G
= 1 MW)
(V
S
= 10 Vdc, R
G
= 10 kW)
Valley Current*
(V
S
= 10 Vdc, R
G
= 1 MW)
(V
S
= 10 Vdc, R
G
= 10 k
W)
(V
S
= 10 Vdc, R
G
= 200
W)
Gate to Anode Leakage Current*
(V
S
= 40 Vdc, T
A
= 25°C, Cathode Open)
(V
S
= 40 Vdc, T
A
= 75°C, Cathode Open)
Gate to Cathode Leakage Current
(V
S
= 40 Vdc, Anode to Cathode Shorted)
Forward Voltage*
(I
F
= 50 mA Peak) (Note 4)
Peak Output Voltage*
(V
G
= 20 Vdc, C
C
= 0.2
mF)
Pulse Voltage Rise Time
(V
B
= 20 Vdc, C
C
= 0.2
mF)
*Indicates JEDEC Registered Data
4. Pulse Test: Pulse Width
≤
300
ms,
Duty Cycle
≤
2%.
+V
B
A
G
V
AK
K
R2
− V
S
=
R1
R1
V
R1 + R2
B
I
A
+
V
AK
R
G
= R1 R2
R1 + R2
R
G
V
S
V
F
V
V
1A − Programmable Unijunction
with Program" Resistors
R1 and R2
1B − Equivalent Test Circuit for
Figure 1A used for electrical
characteristics testing
(also see Figure 2)
I
GAO
I
P
I
V
I
F
V
A
V
S
−V
P
V
T
= V
P
− V
S
2N6027
2N6028
2N6027
2N6028
1
2N6027
2N6028
(Both Types)
1,4,5
2N6027
2N6028
2N6027
2N6028
2N6027
2N6028
−
I
GAO
−
−
−
1,6
3,7
3
I
GKS
V
F
V
o
t
r
−
−
6.0
−
1.0
3.0
5.0
0.8
11
40
10
−
50
1.5
−
80
nAdc
V
V
ns
I
V
−
−
70
25
1.5
1.0
18
18
150
150
−
−
50
25
−
−
−
−
V
T
0.2
0.2
0.2
0.70
0.50
0.35
1.6
0.6
0.6
mA
Fig. No.
2,9,11
Symbol
I
P
−
−
−
−
1.25
0.08
4.0
0.70
2.0
0.15
5.0
1.0
V
Min
Typ
Max
Unit
mA
mA
nAdc
I
A
I
A
IC − Electrical Characteristics
Figure 1. Electrical Characterization
+V
B
+V
510 k
R
R
G
= R/2
V
S
= V
B/2
(See Figure 1)
R
C
C
20
W
v
o
27 k
0.6 V
t
f
t
16 k
V
o
6.0 V
Adjust
for
Turn−on
Threshold
V
B
100 k
1.0%
−
I
P
(SENSE)
100
mV
= 1.0 nA
+
2N5270
0.01
mF
Scope
20
Put
Under
Test
Figure 2. Peak Current (I
P
) Test Circuit
http://onsemi.com
3
Figure 3. V
o
and t
r
Test Circuit
2N6027, 2N6028
TYPICAL VALLEY CURRENT BEHAVIOR
1000
IV, VALLEY CURRENT (
m
A)
IV, VALLEY CURRENT (
m
A)
500
R
G
= 10 kW
100
R
G
= 10 kW
100
100 kW
100 kW
10
1 MW
1 MW
10
5
10
V
S
, SUPPLY VOLTAGE (V)
15
20
5
−50
−25
0
+25
+50
+75
+100
T
A
, AMBIENT TEMPERATURE (°C)
Figure 4. Effect of Supply Voltage
Figure 5. Effect of Temperature
10
V
P
, PEAK FORWARD VOLTAGE (V)
5.0
2.0
1.0
0.5
0.2
0.1
0.05
0.02
0.01
0.01
0.02
0.05
0.1
0.2
0.5
1.0
2.0
5.0
T
A
= 25°C
Vo, PEAK OUTPUT VOLTAGE (V)
25
T
A
= 25°C
(SEE FIGURE 3)
20
C
C
= 0.2
mF
15
10
1000 pF
5.0
0
0
5.0
10
15
20
25
30
35
40
I
F
, PEAK FORWARD CURRENT (AMP)
V
S
, SUPPLY VOLTAGE (V)
Figure 6. Forward Voltage
Figure 7. Peak Output Voltage
A
G
E
A
P
N
P
N
K
G
B2
R
2
R
BB
= R1 + R2
R1
h
=
R1 + R2
R
1
R
T
A
G
R
1
K
B1
R
2
+
C
C
K
Circuit Symbol
Equivalent Circuit
with External Program"
Resistors R1 and R2
Typical Application
Figure 8. Programmable Unijunction
http://onsemi.com
4