Agilent ATF-501P8 High Linearity
Enhancement Mode
[1]
Pseudomorphic HEMT in
2x2 mm
2
LPCC
[3]
Package
Data Sheet
Features
• Single voltage operation
• High Linearity and P1dB
• Low Noise Figure
Description
Agilent Technologies’s ATF-
501P8 is a single-voltage high
linearity, low noise E-pHEMT
housed in an 8-lead JEDEC-
standard leadless plastic chip
carrier (LPCC
[3]
) package. The
device is ideal as a medium-
power amplifier. Its operating
frequency range is from 400 MHz
to 3.9 GHz.
The thermally efficient package
measures only 2mm x 2mm x
0.75mm. Its backside
metalization provides excellent
thermal dissipation as well as
visual evidence of solder reflow.
The device has a Point MTTF of
over 300 years at a mounting
temperature of +85ºC. All devices
are 100% RF & DC tested.
Notes:
1. Enhancement mode technology employs a
single positive V
gs
, eliminating the need of
negative gate voltage associated with
conventional depletion mode devices.
2. Refer to reliability datasheet for detailed
MTTF data.
3. Conforms to JEDEC reference outline MO229
for DRP-N.
4. Linearity Figure of Merit (LFOM) is essentially
OIP3 divided by DC bias power.
Pin Connections and
Package Marking
Source
(Thermal/RF Gnd)
Pin 8
Pin 7 (Drain)
Pin 6
Pin 5
Pin 1 (Source)
Pin 2 (Gate)
Pin 3
Pin 4 (Source)
• Excellent uniformity in product
specifications
• Small package size: 2.0 x 2.0 x
0.75 mm
3
• Point MTTF > 300 years
[2]
• MSL-1 and lead-free
• Tape-and-Reel packaging option
available
Specifications
• 2 GHz; 4.5V, 280 mA (Typ.)
Bottom View
Pin 1 (Source)
Pin 2 (Gate)
Pin 3
Pin 4 (Source)
Pin 8
0Px
Top View
Pin 7 (Drain)
Pin 6
Pin 5
• 45.5 dBm Output IP3
• 29 dBm Output Power at 1dB gain
compression
• 1 dB Noise Figure
• 15 dB Gain
• 14.5 dB LFOM
[4]
• 65% PAE
• 23
o
C/W thermal resistance
Applications
• Front-end LNA Q2 and Q3, Driver or
Pre-driver Amplifier for Cellular/
PCS and WCDMA wireless
infrastructure
• Driver Amplifier for WLAN, WLL/
RLL and MMDS applications
• General purpose discrete E-pHEMT
for other high linearity applications
Note:
Package marking provides orientation and
identification:
“0P” = Device Code
“x” = Date code indicates the month of
manufacture.
Attention:
Observe precautions for
handling electrostatic
sensitive devices.
ESD Machine Model (Class A)
ESD Human Body Model (Class 1B)
Refer to Agilent Application Note A004R:
Electrostatic Discharge Damage and Control.
ATF-501P8 Absolute Maximum Ratings
[1]
Symbol
V
DS
V
GS
V
GD
I
DS
I
GS
P
diss
P
in max.
T
CH
T
STG
θ
ch_b
Parameter
Drain–Source Voltage
[2]
Gate–Source Voltage
[2]
Gate Drain Voltage
[2]
Drain Current
[2]
Gate Current
Total Power Dissipation
[3]
RF Input Power
Channel Temperature
Storage Temperature
Thermal Resistance
[4]
Units
V
V
V
A
mA
W
dBm
°C
°C
°C/W
Absolute
Maximum
7
-5 to 0.8
-5 to 1
1
12
3.5
30
150
-65 to 150
23
Notes:
1. Operation of this device in excess of any one
of these parameters may cause permanent
damage.
2. Assumes DC quiescent conditions.
3. Board (package belly) temperatureT
B
is 25°C.
Derate 43.5 mW/°C for T
B
> 69.5°C.
4. Channel-to-board thermal resistance
measured using 150°C Liquid Crystal
Measurement method.
Product Consistency Distribution Charts at 2 GHz, 4.5V, 200 mA
[5,6]
800
700
600
Ids (mA)
Vgs=0.7V
120
100
Vgs=0.65V
120
Cpk=1.76
Stdev=0.3
100
80
Cpk=1.51
Stdev=3.38
500
Vgs=0.6V
80
60
Vgs=0.55V
–3 Std
+3 Std
400
300
200
100
0
0
1
2
3
Vds (V)
4
5
6
60
40
20
0
45
–3 Std
+3 Std
40
Vgs=0.5V
20
0
27.5
28
28.5
29
29.5
30
30.5
55
65
PAE (%)
75
85
P1dB (dBm)
Figure 1. Typical IV curve
(Vgs = 0.01V) per step.
100
Figure 2. P1dB.
Figure 3. PAE.
100
Cpk=1.61
Stdev=0.33
80
80
Cpk=1.1
Stdev=0.87
60
60
–3 Std
40
+3 Std
40
–3 Std
+3 Std
20
20
0
13
14
15
GAIN (dB)
16
17
0
42
43
44
45
46
47
48
49
50
OIP3 (dBm)
Figure 4. Gain.
Figure 5. OIP3.
Notes:
5. Distribution data sample size is 300 samples taken from 3 different wafers and 3 different lots.
Future wafers allocated to this product may have nominal values anywhere between the upper and
lower limits.
6. Measurements are made on production test board, which represents a trade-off between optimal
OIP3, P1dB and VSWR. Circuit losses have been de-embedded from actual measurements.
2
ATF-501P8 Electrical Specifications
T
A
= 25°C, DC bias for RF parameters is Vds = 4.5V and Ids = 280 mA unless otherwise specified.
Symbol
Vgs
Vth
Idss
Gm
Parameter and Test Condition
Operational Gate Voltage
Threshold Voltage
Saturated Drain Current
Transconductance
Vds = 4.5V, Ids = 280 mA
Vds = 4.5V, Ids = 32 mA
Vds = 4.5V, Vgs = 0V
Vds = 4.5V, Gm =
∆Ids/∆Vgs;
∆Vgs
= Vgs1 – Vgs2
Vgs1 = 0.55V, Vgs2 = 0.5V
Vds = 0V, Vgs = -4.5V
f = 2 GHz
f = 900 MHz
f = 2 GHz
f = 900 MHz
f = 2 GHz
f = 900 MHz
f = 2 GHz
f = 900 MHz
f = 2 GHz
f = 900 MHz
Offset BW = 5 MHz
Offset BW = 10 MHz
Units
V
V
µA
mmho
Min.
0.42
—
—
—
Typ.
0.55
0.33
5
1872
Max.
0.67
—
—
—
Igss
NF
G
OIP3
P1dB
PAE
ACLR
Gate Leakage Current
Noise Figure
[1]
Gain
[1]
Output 3
rd
Order Intercept Point
[1,2]
Output 1dB Compressed
[1]
Power Added Efficiency
[1]
Adjacent Channel Leakage
Power Ratio
[1,3]
µA
dB
dB
dB
dB
dBm
dBm
dBm
dBm
%
%
dBc
dBc
-30
—
—
13.5
—
43
—
27.5
—
50
—
—
—
-0.8
1
—
15
16.6
45.5
42
29
27.3
65
49
63.9
64.1
—
—
—
16.5
—
—
—
—
—
—
—
—
—
Notes:
1. Measurements at 2 GHz obtained using production test board described in Figure 2 while measurement at 0.9GHz obtained from load pull tuner.
2. i ) 2 GHz OIP3 test condition: F1 = 2.0 GHz, F2 = 2.01 GHz and Pin = -5 dBm per tone.
ii ) 900 MHz OIP3 test condition: F1 = 900 MHz, F2 = 910 MHz and Pin = -5dBm per tone.
3. ACLR test spec is based on 3GPP TS 25.141 V5.3.1 (2002-06)
- Test Model 1
- Active Channels: PCCPCH + SCH + CPICH + PICH + SCCPCH + 64 DPCH (SF=128)
- Freq = 2140 MHz
- Pin = -5 dBm
- Channel Integrate Bandwidth = 3.84 MHz
4. Use proper bias, board, heatsinking and derating designs to ensure max channel temperature is not exceeded.
See absolute max ratings and application note for more details.
Input
50 Ohm
Transmission
Line and
Drain Bias T
(0.3 dB loss)
Input
Matching
Circuit
Γ_mag=0.79
Γ_ang=-164°
(1.1 dB loss)
DUT
Output
Matching
Circuit
Γ_mag=0.69
Γ_ang=-163°
(0.9 dB loss)
50 Ohm
Transmission
Line and
Drain Bias T
(0.3 dB loss)
Output
Figure 6. Block diagram of the 2 GHz production test board used for NF, Gain, OIP3 , P1dB and PAE measurements at 2 GHz. This circuit achieves a
trade-off between optimal OIP3, P1dB and VSWR. Circuit losses have been de-embedded from actual measurements.
3
1.8 nH
1.2 pF
RF Input
15 nH
2.2
µF
50 Ohm
.02
110 Ohm
.03
110 Ohm
.03
50 Ohm
.02
1.2 pF
3.3 nH
DUT
47 nH
RF Output
15 Ohm
2.2
µF
Gate
Supply
Drain
Supply
Figure 3. Simplified schematic of production test board. Primary purpose is to show 15 Ohm series resistor placement in
gate supply. Transmission line tapers, tee intersections, bias lines and parasitic values are not shown.
Gamma Load and Source at Optimum OIP3 and P1dB Tuning Conditions
The device’s optimum OIP3 and P1dB measurements were determined using a load pull system at 4.5V
280 mA and 4.5V 400 mA quiesent bias respectively:
Typical Gammas at Optimum OIP3 at 4.5V 280 mA
Freq (GHz)
0.9
2.0
2.4
3.9
Optimized for maximum OIP3 at 4.5V 280 mA
OIP3
Gain
P1dB
46.42
45.50
44.83
43.97
16.03
15.07
12.97
6.11
26.67
28.93
29.03
27.33
PAE
45.80
50.30
45.70
33.90
Gamma Source
0.305 < -140
0.806 < -179.2
0.756 < -167
0.782 < -162
Gamma Load
0.577 < 162
0.511 < 164
0.589 < -168
0.524 < -153
Typical Gammas at Optimum P1dB at 4.5V 280mA
Freq (GHz)
0.9
2.0
2.4
3.9
Optimized for maximum P1dB at 4.5V 280 mA
OIP3
Gain
P1dB
39.29
41.79
42.37
42.00
20.90
14.72
11.25
5.63
30.49
30.60
30.24
28.26
PAE
41.00
45.30
39.70
25.80
Gamma Source
0.859 < 165
0.76 < -171
0.745 < -166
0.759 < -159
Gamma Load
0.757 < 179
0.691 < -168
0.694 < -161
0.708 < -149
Typical Gammas at Optimum OIP3 at 4.5V 400 mA
Freq (GHz)
0.9
2.0
2.4
3.9
Optimized for maximum OIP3 at 4.5V 400 mA
OIP3
Gain
P1dB
49.15
48.18
47.54
45.44
16.85
14.72
12.47
8.05
27.86
29.36
29.10
28.49
PAE
44.20
48.89
46.83
37.02
Gamma Source
0.5852 < -135.80
0.7267 < -175.37
0.6155 < -171.71
0.7888 < -148.43
Gamma Load
0.4785 < 177.00
0.7338 < 179.56
0.5411 < -172.02
0.5247 < -145.84
Typical Gammas at Optimum P1dB at 4.5V 400 mA
Freq (GHz)
0.9
2.0
2.4
3.9
Optimized for maximum P1dB at 4.5V 400 mA
OIP3
Gain
P1dB
41.78
43.28
42.46
42.94
21.84
14.83
11.90
7.70
31.23
31.03
30.66
29.56
PAE
49.97
44.78
41.00
33.06
Gamma Source
0.7765 < 168.50
0.8172 < -175.74
0.8149 < -163.78
0.8394 < -151.21
Gamma Load
0.7589 < -175.09
0.8011 < -165.75
0.8042 < -161.79
0.7826 < -149.00
4
ATF-501P8 Typical Performance Curves
(at 25°C unless specified otherwise)
Tuned for Optimal OIP3 at 4.5V 280 mA
55
4.5V
5.5V
3.5V
55
4.5V
5.5V
3.5V
35
50
50
30
45
45
P1dB (dBm)
OIP3 (dBm)
OIP3 (dBm)
25
4.5V
5.5V
3.5V
40
40
35
35
20
30
200 240 280 320 360 400 440 480 520 560 600 640
30
200 240 280 320 360 400 440 480 520 560 600 640
15
200 240 280 320 360 400 440 480 520 560 600 640
Idq (mA)
Idq (mA)
Idq (mA)
Figure 8. OIP3 vs. Idq and Vds at 2 GHz.
Figure 9. OIP3 vs. Idq and Vds at 0.9 GHz.
Figure 10. P1dB vs. Idq and Vds at 2 GHz.
35
25
4.5V
5.5V
3.5V
25
4.5V
5.5V
3.5V
20
30
20
P1dB (dBm)
GAIN (dB)
15
GAIN (dB)
Idq (mA)
15
25
4.5V
5.5V
3.5V
10
10
20
5
5
15
200 240 280 320 360 400 440 480 520 560 600 640
0
200 240 280 320 360 400 440 480 520 560 600 640
0
200 240 280 320 360 400 440 480 520 560 600 640
Idq (mA)
Idq (mA)
Figure 11. P1dB vs. Idq and Vds at 0.9 GHz.
Figure 12. Gain vs. Idq and Vds at 2 GHz.
Figure 13. Gain vs. Idq and Vds at 0.9 GHz.
60
50
40
60
50
40
PAE (%)
30
20
10
0
200 240 280 320 360 400 440 480 520 560 600 640
PAE (%)
4.5V
5.5V
3.5V
30
20
10
0
200 240 280 320 360 400 440 480 520 560 600 640
4.5V
5.5V
3.5V
Idq (mA)
Idq (mA)
Figure 14. PAE vs. Idq and Vds at 2 GHz.
Figure 15. PAE vs. Idq and Vds at 0.9 GHz.
5