D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
NGB8206N
Ignition IGBT
20 A, 350 V, N−Channel D
2
PAK
This Logic Level Insulated Gate Bipolar Transistor (IGBT) features
monolithic circuitry integrating ESD and Overvoltage clamped
protection for use in inductive coil drivers applications. Primary uses
include Ignition, Direct Fuel Injection, or wherever high voltage and
high current switching is required.
Features
http://onsemi.com
•
Ideal for Coil−on−Plug and Driver−on−Coil Applications
•
Gate−Emitter ESD Protection
•
Temperature Compensated Gate−Collector Voltage Clamp Limits
•
•
•
•
•
•
Stress Applied to Load
Integrated ESD Diode Protection
Low Threshold Voltage for Interfacing Power Loads to Logic or
Microprocessor Devices
Low Saturation Voltage
High Pulsed Current Capability
Optional Gate Resistor (R
G
) and Gate−Emitter Resistor (R
GE
)
Pb−Free Packages are Available
20 AMPS
350 VOLTS
V
CE(on)
= 1.3 V @
I
C
= 10 A, V
GE
.
4.5 V
C
G
R
G
R
GE
E
Applications
•
Ignition Systems
MAXIMUM RATINGS
(T
J
= 25°C unless otherwise noted)
Rating
Collector−Emitter Voltage
Collector−Gate Voltage
Gate−Emitter Voltage
Collector Current−Continuous
@ T
C
= 25°C − Pulsed
Continuous Gate Current
Transient Gate Current (t
≤
2 ms, f
≤
100 Hz)
ESD (Charged−Device Model)
ESD (Human Body Model)
R = 1500
W,
C = 100 pF
ESD (Machine Model) R = 0
W,
C = 200 pF
Total Power Dissipation @ T
C
= 25°C
Derate above 25°C
Operating & Storage Temperature Range
Symbol
V
CES
V
CER
V
GE
I
C
I
G
I
G
ESD
ESD
8.0
ESD
P
D
T
J
, T
stg
500
150
1.0
−55 to
+175
V
W
W/°C
°C
Value
390
390
$15
20
50
1.0
20
2.0
Unit
V
V
V
A
DC
A
AC
mA
mA
kV
kV
1 2
3
4
MARKING
DIAGRAM
NGB
8206NG
AYWW
D
2
PAK
CASE 418B
STYLE 4
NGB8206N = Device Code
G
= Pb−Free Device
A
= Assembly Location
Y
= Year
WW
= Work Week
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
©
Semiconductor Components Industries, LLC, 2006
1
February, 2006 − Rev. 5
Publication Order Number:
NGB8206N/D
NGB8206N
UNCLAMPED COLLECTOR−TO−EMITTER AVALANCHE CHARACTERISTICS
(−55°
≤
T
J
≤
175°C)
Characteristic
Single Pulse Collector−to−Emitter Avalanche Energy
V
CC
= 50 V, V
GE
= 5.0 V, Pk I
L
= 16.7 A, L = 1.8 mH, R
g
= 1 kW Starting T
J
= 25°C
V
CC
= 50 V, V
GE
= 5.0 V, Pk I
L
= 14.9 A, L = 1.8 mH, R
g
= 1 kW Starting T
J
= 150°C
V
CC
= 50 V, V
GE
= 5.0 V, Pk I
L
= 14.1 A, L = 1.8 mH, R
g
= 1 kW Starting T
J
= 175°C
Reverse Avalanche Energy
V
CC
= 100 V, V
GE
= 20 V, Pk I
L
= 25.8 A, L = 6.0 mH, Starting T
J
= 25°C
THERMAL CHARACTERISTICS
Thermal Resistance, Junction−to−Case
Thermal Resistance, Junction−to−Ambient (Note 1)
Maximum Temperature for Soldering Purposes, 0.125 in from case for 5 seconds (Note 2)
1. When surface mounted to an FR4 board using the minimum recommended pad size.
2. For further details, see Soldering and Mounting Techniques Reference Manual: SOLDERRM/D.
R
qJC
R
qJA
T
L
1.0
62.5
275
°C/W
°C/W
°C
Symbol
E
AS
250
200
180
E
AS(R)
2000
mJ
Value
Unit
mJ
ELECTRICAL CHARACTERISTICS
Characteristic
OFF CHARACTERISTICS
Collector−Emitter Clamp Voltage
BV
CES
I
C
= 2.0 mA
I
C
= 10 mA
Zero Gate Voltage Collector Current
I
CES
V
CE
= 15 V,
V
GE
= 0 V
V
CE
= 175 V,
V
GE
= 0 V
Reverse Collector−Emitter Clamp Voltage
B
VCES(R)
I
C
= −75 mA
T
J
= −40°C to 175°C
T
J
= −40°C to 175°C
T
J
= 25°C
T
J
= 25°C
T
J
= 175°C
T
J
= −40°C
T
J
= 25°C
T
J
= 175°C
T
J
= −40°C
Reverse Collector−Emitter Leakage Current
I
CES(R)
V
CE
= −24 V
I
G
=
$5.0
mA
V
GE
=
$5.0
V
T
J
= 25°C
T
J
= 175°C
T
J
= −40°C
Gate−Emitter Clamp Voltage
Gate−Emitter Leakage Current
Gate Resistor (Optional)
Gate−Emitter Resistor
ON CHARACTERISTICS
(Note 3)
Gate Threshold Voltage
V
GE(th)
I
C
= 1.0 mA,
V
GE
= V
CE
Threshold Temperature Coefficient (Negative)
*Maximum Value of Characteristic across Temperature Range.
3. Pulse Test: Pulse Width
v
300
mS,
Duty Cycle
v
2%.
T
J
= 25°C
T
J
= 175°C
T
J
= −40°C
1.5
0.7
1.7
3.8
1.8
1.0
2.0
4.6
2.1
1.3
2.3*
6.0
mV/°C
V
BV
GES
I
GES
R
G
R
GE
T
J
= −40°C to 175°C
T
J
= −40°C to 175°C
T
J
= −40°C to 175°C
T
J
= −40°C to 175°C
14.25
0.5
1.0
0.4
30
35
30
0.05
1.0
0.005
12
200
325
340
350
365
0.1
1.5
25
0.8
35
39
33
0.25
12.5
0.03
12.5
300
70
16
25
375
390
1.0
10
100*
5.0
39
45*
37
0.5
25
0.25
14
350*
V
mA
W
kW
mA
V
mA
V
Symbol
Test Conditions
Temperature
Min
Typ
Max
Unit
http://onsemi.com
2
NGB8206N
ELECTRICAL CHARACTERISTICS
Characteristic
ON CHARACTERISTICS
(Note 3)
Collector−to−Emitter On−Voltage
V
CE(on)
I
C
= 6.5 A,
V
GE
= 3.7 V
T
J
= 25°C
T
J
= 175°C
T
J
= −40°C
T
J
= 25°C
I
C
= 9.0 A,
V
GE
= 3.9 V
T
J
= 175°C
T
J
= −40°C
T
J
= 25°C
I
C
= 7.5 A,
V
GE
= 4.5 V
T
J
= 175°C
T
J
= −40°C
T
J
= 25°C
I
C
= 10 A,
V
GE
= 4.5 V
T
J
= 175°C
T
J
= −40°C
T
J
= 25°C
I
C
= 15 A,
V
GE
= 4.5 V
T
J
= 175°C
T
J
= −40°C
T
J
= 25°C
I
C
= 20 A,
V
GE
= 4.5 V
Forward Transconductance
DYNAMIC CHARACTERISTICS
Input Capacitance
Output Capacitance
Transfer Capacitance
SWITCHING CHARACTERISTICS
Turn−Off Delay Time (Resistive)
t
d(off)
V
CC
= 300 V, I
C
=
9.0 A
R
G
= 1.0 kW, R
L
= 33
W
V
GE
= 5 V
V
CC
= 300 V, I
C
=
9.0 A
R
G
= 1.0 kW, L =
300
mH
V
GE
= 5 V
V
CC
= 14 V, I
C
=
9.0 A
R
G
= 1.0 kW, R
L
= 1.5
W
V
GE
= 5 V
T
J
= 25°C
T
J
= 175°C
T
J
= 25°C
T
J
= 175°C
T
J
= 25°C
T
J
= 175°C
T
J
= 25°C
T
J
= 175°C
T
J
= 25°C
T
J
= 175°C
T
J
= 25°C
T
J
= 175°C
6.0
6.0
4.0
8.0
3.0
5.0
1.5
5.0
1.0
1.0
4.0
3.0
8.0
8.0
6.0
10.5
5.0
7.0
3.0
7.0
1.5
1.5
6.0
5.0
10
10
8.0
14
7.0
9.0
4.5
10
2.0
2.0
8.0
7.0
mSec
C
ISS
C
OSS
C
RSS
f = 10 kHz, V
CE
=
25 V
T
J
= 25°C
1100
70
18
1300
80
20
1500
90
22
pF
gfs
I
C
= 6.0 A,
V
CE
= 5.0 V
T
J
= 175°C
T
J
= −40°C
T
J
= 25°C
0.95
0.70
1.0
0.95
0.8
1.1
0.85
0.7
1.0
1.0
0.8
1.1
1.15
1.0
1.25
1.3
1.2
1.4
10
1.15
0.95
1.30
1.25
1.05
1.4
1.15
0.95
1.3
1.3
1.05
1.4
1.45
1.3
1.55
1.6
1.5
1.75
18
1.35
1.15
1.40
1.45
1.25
1.50
1.4
1.2
1.6*
1.6
1.4
1.7*
1.7
1.55
1.8*
1.9
1.8
2.0*
25
Mhos
V
Symbol
Test Conditions
Temperature
Min
Typ
Max
Unit
Fall Time (Resistive)
t
f
Turn−Off Delay Time (Inductive)
t
d(off)
Fall Time (Inductive)
t
f
Turn−On Delay Time
t
d(on)
Rise Time
t
r
*Maximum Value of Characteristic across Temperature Range.
3. Pulse Test: Pulse Width
v
300
mS,
Duty Cycle
v
2%.
http://onsemi.com
3
NGB8206N
TYPICAL ELECTRICAL CHARACTERISTICS
400
T
J
= 25°C
I
A
, AVALANCHE CURRENT (A)
350
SCIS ENERGY (mJ)
300
250
200
150
100
50
0
0
2
4
6
INDUCTOR (mH)
V
CC
= 14 V
V
GE
= 5.0 V
R
G
= 1000
W
8
10
T
J
= 175°C
30
25
20
15
10
5
0
−50
L = 1.8 mH
L = 3.0 mH
V
CC
= 14 V
V
GE
= 5.0 V
R
G
= 1000
W
L = 10 mH
−25
0
25
50
75
100
125
150 175
T
J
, JUNCTION TEMPERATURE (°C)
Figure 1. Self Clamped Inductive Switching
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
2.0
I
C,
COLLECTOR CURRENT (A)
1.75
1.5
1.25
1.0
I
C
= 7.5 A
0.75
0.5
0.25
0.0
−50
V
GE
= 4.5 V
−25
0
25
50
75
100
125
150
175
I
C
= 25 A
I
C
= 20 A
I
C
= 15 A
I
C
= 10 A
60
Figure 2. Open Secondary Avalanche Current
vs. Temperature
V
GE
= 10 V
50
40
30
20
10
0
0
1
2
3
4
5
6
7
8
3V
2.5 V
5V
T
J
= 175°C
3.5 V
4.5 V
4V
T
J
, JUNCTION TEMPERATURE (°C)
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
Figure 3. Collector−to−Emitter Voltage vs.
Junction Temperature
60
I
C,
COLLECTOR CURRENT (A)
I
C,
COLLECTOR CURRENT (A)
V
GE
= 10 V
50
5V
40
T
J
= 25°C
30
20
10
2.5 V
0
0
1
2
3
4
5
6
7
8
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
3V
3.5 V
4.5 V
4V
60
Figure 4. Collector Current vs.
Collector−to−Emitter Voltage
V
GE
= 10 V
50
5V
40
T
J
= −40°C
30
20
4.5 V
4V
3.5 V
3V
10
2.5 V
0
0
1
2
3
4
5
6
7
8
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
Figure 5. Collector Current vs.
Collector−to−Emitter Voltage
Figure 6. Collector Current vs.
Collector−to−Emitter Voltage
http://onsemi.com
4