PD-95474B
SMPS MOSFET
Applications
l
High frequency DC-DC converters
Benefits
l
Low Gate to Drain Charge to Reduce
Switching Losses
l
Fully Characterized Capacitance Including
Effective C
OSS
to Simplify Design, (See
App. Note AN1001)
l
Fully Characterized Avalanche Voltage
and Current
l
Lead-Free
l
Halogen-Free
IRF5801PbF
HEXFET
®
Power MOSFET
V
DSS
200V
R
DS(on)
max
2.2W
I
D
0.6A
9
9
B
!
"
%
$
#
9
9
T
TSOP-6
Absolute Maximum Ratings
Parameter
I
D
@ T
A
= 25°C
I
D
@ T
A
= 70°C
I
DM
P
D
@T
A
= 25°C
V
GS
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
0.6
0.48
4.8
2.0
0.016
± 30
9.6
-55 to + 150
300 (1.6mm from case )
Units
A
W
W/°C
V
V/ns
°C
Thermal Resistance
Symbol
R
θJA
Parameter
Junction-to-Ambient
Typ.
–––
Max.
62.5
Units
°C/W
Notes
through
are on page 8
www.irf.com
1
04/20/10
IRF5801PbF
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V
(BR)DSS
/∆T
J
Breakdown Voltage Temp. Coefficient
R
DS(on)
Static Drain-to-Source On-Resistance
V
GS(th)
Gate Threshold Voltage
V
(BR)DSS
I
DSS
I
GSS
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
200
–––
–––
3.0
–––
–––
–––
–––
Typ.
–––
0.26
–––
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
V
GS
= 0V, I
D
= 250µA
––– V/°C Reference to 25°C, I
D
= 1mA
2.2
Ω
V
GS
= 10V, I
D
= 0.36A
5.5
V
V
DS
= V
GS
, I
D
= 250µA
25
V
DS
= 200V, V
GS
= 0V
µA
250
V
DS
= 160V, V
GS
= 0V, T
J
= 150°C
100
V
GS
= 30V
nA
-100
V
GS
= -30V
Dynamic @ T
J
= 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min. Typ. Max. Units
Conditions
0.44 ––– –––
S
V
DS
= 50V, I
D
= 0.36A
–––
3.9 –––
I
D
= 0.36A
–––
0.8 –––
nC
V
DS
= 160V
–––
2.2 –––
V
GS
= 10V
–––
6.5 –––
V
DD
= 100V
–––
8.0 –––
I
D
= 0.36A
ns
–––
8.8 –––
R
G
= 53Ω
–––
19 –––
V
GS
= 10V
–––
88 –––
V
GS
= 0V
–––
18 –––
V
DS
= 25V
–––
6.3 –––
pF
ƒ = 1.0MHz
––– 102 –––
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
–––
8.4 –––
V
GS
= 0V, V
DS
= 160V, ƒ = 1.0MHz
–––
26 –––
V
GS
= 0V, V
DS
= 0V to 160V
Avalanche Characteristics
Parameter
E
AS
I
AR
Single Pulse Avalanche Energy
Avalanche Current
Typ.
–––
–––
Max.
9.9
0.6
Units
mJ
A
Diode Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Min. Typ. Max. Units
–––
–––
–––
–––
–––
–––
–––
–––
45
54
1.8
A
4.8
1.3
–––
–––
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
T
J
= 25°C, I
S
= 0.36A, V
GS
= 0V
T
J
= 25°C, I
F
= 0.36A
di/dt = 100A/µs
D
S
2
www.irf.com
IRF5801PbF
10
VGS
TOP
15.0V
12.0V
10.0V
8.0V
7.5V
7.0V
6.5V
BOTTOM 6.0V
10
ID, Drain-to-Source Current (A)
1
ID, Drain-to-Source Current (A)
1
VGS
15.0V
12.0V
10.0V
8.0V
7.5V
7.0V
6.5V
BOTTOM 6.0V
TOP
6.0V
6.0V
0.1
0.1
20µs PULSE WIDTH
Tj = 25°C
0.01
0.1
1
10
100
0.01
0.1
1
20µs PULSE WIDTH
Tj = 150°C
10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
10
3.0
I
D
= 0.6A
I
D
, Drain-to-Source Current (A)
2.5
T
J
= 150
°
C
2.0
1
1.5
T
J
= 25
°
C
1.0
0.5
0.1
V DS = 50V
20µs PULSE WIDTH
6
7
8
9
10
11
12
0.0
-60 -40 -20
V
GS
= 10V
0
20 40 60 80 100 120 140 160
V
GS
, Gate-to-Source Voltage (V)
T
J
, Junction Temperature (
°
C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRF5801PbF
160
V
GS
, Gate-to-Source Voltage (V)
C, Capacitance(pF)
120
V GS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
20
I
D
=
0.36A
16
V
DS
= 160V
V
DS
= 100V
V
DS
= 40V
Ciss
80
12
8
40
Coss
Crss
4
0
1
10
100
1000
0
0
1
2
3
4
5
Q
G
, Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
10
100
I
SD
, Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
I
D
, Drain Current (A)
10
T
J
= 150
°
C
1
10us
1
100us
1ms
0.1
10ms
T
J
= 25
°
C
0.1
0.4
V
GS
= 0 V
0.5
0.6
0.7
0.8
0.9
1.0
0.01
T
C
= 25 °C
T
J
= 150 °C
Single Pulse
1
10
100
1000
V
SD
,Source-to-Drain Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRF5801PbF
0.6
V
DS
V
GS
R
G
R
D
0.5
D.U.T.
+
I
D
, Drain Current (A)
0.4
-
V
DD
10V
0.3
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
0.2
Fig 10a.
Switching Time Test Circuit
V
DS
90%
0.1
0.0
25
50
T
C
, Case Temperature ( °C)
75
100
125
150
Fig 9.
Maximum Drain Current Vs.
Case Temperature
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms
100
Thermal Response(Z
thJC
)
D = 0.50
0.20
10
0.10
0.05
0.02
1
0.01
SINGLE PULSE
(THERMAL RESPONSE)
P
DM
t
1
t
2
Notes:
1. Duty factor D =t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.0001
0.001
0.01
0.1
1
10
100
0.1
0.00001
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5