TYPICAL PERFORMANCE CURVES
®
1200V
APT20GF120B_SRDQ1(G)
APT20GF120BRDQ1
APT20GF120SRDQ1
APT20GF120BRDQ1G* APT20GF120SRDQ1G*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
FAST IGBT & FRED
The Fast IGBT is a new generation of high voltage power IGBTs. Using Non-Punch through
technology, the Fast IGBT combined with an APT free wheeling Ultra Fast Recovery Epi-
taxial Diode (FRED) offers superior ruggedness and fast switching speed.
• Low Forward Voltage Drop
• RBSOA and SCSOA Rated
• High Freq. Switching to 20KHz
• Ultra Low Leakage Current
G
C
E
(B)
TO
-2
47
D
3
PAK
C
G
E
(S)
• Ultrafast Soft Recovery Anti-parallel Diode
C
G
E
MAXIMUM RATINGS
Symbol
V
CES
V
GE
I
C1
I
C2
I
CM
SSOA
P
D
T
J
,T
STG
T
L
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current @ T
C
= 25°C
Continuous Collector Current @ T
C
= 100°C
Pulsed Collector Current
1
All Ratings: T
C
= 25°C unless otherwise specified.
APT20GF120B_SRDQ1(G)
UNIT
Volts
1200
±30
36
20
64
64A @ 1200V
200
-55 to 150
300
Amps
Switching Safe Operating Area @ T
J
= 150°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
Watts
°C
STATIC ELECTRICAL CHARACTERISTICS
Symbol
V
(BR)CES
V
GE(TH)
V
CE(ON)
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (V
GE
= 0V, I
C
= 600µA)
Gate Threshold Voltage
(V
CE
= V
GE
, I
C
= 600µA, T
j
= 25°C)
MIN
TYP
MAX
Units
1200
4.5
5.5
2.7
3.3
1
2
2
6.5
3.2
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 15A, T
j
= 25°C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 15A, T
j
= 125°C)
Collector Cut-off Current (V
CE
= 1200V, V
GE
= 0V, T
j
= 25°C)
Volts
I
CES
I
GES
mA
nA
10-2005
052-6279
Rev A
Collector Cut-off Current (V
CE
= 1200V, V
GE
= 0V, T
j
= 125°C)
Gate-Emitter Leakage Current (V
GE
= ±20V)
6
±100
CAUTION:
These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
DYNAMIC CHARACTERISTICS
Symbol
C
ies
C
oes
C
res
V
GEP
Q
g
Q
ge
Q
gc
SSOA
t
d(on)
t
d(off)
t
f
E
on1
E
on2
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
E
off
t
r
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge
3
APT20GF120B_SRDQ1(G)
Test Conditions
Capacitance
V
GE
= 0V, V
CE
= 25V
f = 1 MHz
Gate Charge
V
CE
= 600V
I
C
= 15A
T
J
= 150°C, R
G
= 4.3Ω, V
GE
=
Inductive Switching (25°C)
V
CC
= 800V
V
GE
= 15V
R
G
= 4.3Ω
I
C
= 15A
V
GE
= 15V
MIN
TYP
MAX
UNIT
pF
V
nC
1090
125
65
10.5
100
12
65
64
10
9
120
95
895
850
840
10
9
145
110
865
1480
1058
µ
J
ns
ns
A
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Switching Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
Turn-off Switching Energy
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
Turn-off Switching Energy
4
4
55
4
5
15V, L = 100µH,V
CE
= 1200V
Turn-on Switching Energy (Diode)
6
T
J
= +25°C
Inductive Switching (125°C)
V
CC
= 800V
V
GE
= 15V
R
G
= 4.3Ω
I
C
= 15A
µ
J
Turn-on Switching Energy (Diode)
6
T
J
= +125°C
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
R
θ
JC
R
θ
JC
W
T
Characteristic
Junction to Case
(IGBT)
Junction to Case
(DIODE)
Package Weight
MIN
TYP
MAX
UNIT
°C/W
gm
.63
1.18
5.9
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, I
ces
includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 E
on1
is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
10-2005
5 E
on2
is
loss. (See Figures 21, 22.)
6 E
off
is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
052-6279
Rev A
TYPICAL PERFORMANCE CURVES
60
50
T
J
= 25°C
40
30
T
J
= 125°C
20
10
0
V
GE
= 15V
80
70
I
C
, COLLECTOR CURRENT (A)
60
50
40
30
20
10
0
APT20GF120B_SRDQ1(G)
15V
T
J
= -55°C
I
C
, COLLECTOR CURRENT (A)
13V
12V
11V
10V
9V
8V 7V
60
50
FIGURE 1, Output Characteristics(T
J
= 25°C)
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
0
1
2
3
4
5
6
7
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
16
14
12
10
FIGURE 2, Output Characteristics (T
J
= 125°C)
I = 15A
C
T = 25°C
J
0
5
10
15
20
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
V
CE
= 240V
I
C
, COLLECTOR CURRENT (A)
T
J
= -55°C
40
30
20
V
CE
= 600V
8
6
4
2
0
0
20
V
CE
= 960V
T
J
= 25°C
10
T
J
= 125°C
0
0
2
4
6
8
10 12 14 16
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
40
60
80
100
GATE CHARGE (nC)
FIGURE 4, Gate Charge
120
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
5
4
3
2
1
0
T
J
= 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
6
5
I
C
= 30A
I
C
= 15A
4
I
C
= 30A
I
C
= 15A
3
2
I
C
= 7.5A
I
C
= 7.5A
1
V
GE
= 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
10
12
14
16
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.15
8
25
50
75
100
125
150
T
J
, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
50
0
0
I
C,
DC COLLECTOR CURRENT(A)
V
GS(TH)
, THRESHOLD VOLTAGE
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
45
40
35
30
25
10-2005
052-6279
Rev A
20
15
10
5
-25
0
25 50 75 100 125 150
T
C
, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
0
-50
(NORMALIZED)
12
10
8
6
4
2
T = 25°C
,
or 125°C
J
35
30
25
20
15
10
5
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
0
40
35
30
R
G
=
4.3Ω, L
=
100
µ
H, V
CE
=
800V
V
CE
= 800V
R
G
= 4.3Ω
L = 100µH
180
APT20GF120B_SRDQ1(G)
V
GE
= 15V
t
d (OFF)
, TURN-OFF DELAY TIME (ns)
t
d(ON)
, TURN-ON DELAY TIME (ns)
160
140
120
100
80
60
40
20
0
V
CE
=
800V
R
G
=
4.3Ω
L = 100µH
V
GE
=15V,T
J
=125°C
V
GE
=15V,T
J
=25°C
0
35
30
25
20
15
10
5
0
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
120
100
R
G
=
4.3Ω, L
=
100
µ
H, V
CE
=
800V
t
f,
FALL TIME (ns)
t
r,
RISE TIME (ns)
25
20
15
10
5
35
30
25
20
15
10
5
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
0
4000
0
T
J
=
25 or 125°C,V
GE
=
15V
80
60
40
20
0
T
J
=
125°C, V
GE
=
15V
T
J
=
25°C, V
GE
=
15V
35
30
25
20
15
10
5
0
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
2500
3500
3000
2500
2000
1500
1000
500
0
E
OFF
, TURN OFF ENERGY LOSS (µJ)
E
ON2
, TURN ON ENERGY LOSS (µJ)
= 800V
V
CE
= +15V
V
GE
R = 4.3Ω
G
V
= 800V
CE
V
= +15V
GE
R = 4.3Ω
G
2000
T
J
=
125°C
T
J
=
125°C
1500
1000
T
J
=
25°C
500
T
J
=
25°C
35
30
25
20
15
10
5
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
9000
35
30
25
20
15
10
5
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
4000
V
= 800V
CE
V
= +15V
GE
R = 4.3Ω
G
0
SWITCHING ENERGY LOSSES (µJ)
J
7000
6000
5000
4000
3000
2000
1000
0
0
E
on2,
7.5A
SWITCHING ENERGY LOSSES (µJ)
8000
V
= 800V
CE
V
= +15V
GE
T = 125°C
E
on2,
30A
3500
3000
2500
2000
1500
1000
500
0
E
on2,
30A
E
off,
30A
10-2005
E
off,
30A
E
off,
15A
E
on2,
15A
E
on2,
15A
E
off,
15A
E
on2,
7.5A
E
off,
7.5A
Rev A
E
off,
7.5A
052-6279
50
40
30
20
10
R
G
, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
125
100
75
50
25
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
TYPICAL PERFORMANCE CURVES
2,000
1,000
C, CAPACITANCE ( F)
500
I
C
, COLLECTOR CURRENT (A)
C
ies
70
60
50
40
30
20
10
APT20GF120B_SRDQ1(G)
P
100
50
C
oes
C
res
0
10
20
30
40
50
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
10
0
200 400 600 800 1000 1200 1400
V
CE
, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0
0.5
Note:
Z
θ
JC
, THERMAL IMPEDANCE (°C/W)
D = 0.9
0.7
PDM
0.3
t1
t2
0.1
0.05
10
-5
10
-4
SINGLE PULSE
Duty Factor D =
1
/
t2
Peak TJ = PDM x Z
θJC
+ TC
t
10
-3
10
-2
10
-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
120
100
F
MAX
, OPERATING FREQUENCY (kHz)
RC MODEL
Junction
temp. (°C)
0.316
Power
(watts)
0.313
Case temperature. (°C)
0.148
0.00468
50
= min (f
max
, f
max2
)
0.05
f
max1
=
t
d(on)
+ t
r
+ t
d(off)
+ t
f
max
T = 125
°
C
J
T = 75
°
C
C
D = 50 %
V
= 800V
CE
R = 4.3Ω
G
F
f
max2
=
P
diss
=
P
diss
- P
cond
E
on2
+ E
off
T
J
- T
C
R
θJC
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
5
10
15
20
25
30
I
C
, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
10
0
052-6279
Rev A
10-2005