D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
TL431, A, B Series,
NCV431A, B
Programmable
Precision References
The TL431, A, B integrated circuits are three−terminal
programmable shunt regulator diodes. These monolithic IC voltage
references operate as a low temperature coefficient zener which is
programmable from V
ref
to 36 V with two external resistors. These
devices exhibit a wide operating current range of 1.0 mA to 100 mA
with a typical dynamic impedance of 0.22
W.
The characteristics of
these references make them excellent replacements for zener diodes in
many applications such as digital voltmeters, power supplies, and op
amp circuitry. The 2.5 V reference makes it convenient to obtain a
stable reference from 5.0 V logic supplies, and since the TL431, A, B
operates as a shunt regulator, it can be used as either a positive or
negative voltage reference.
Features
http://onsemi.com
TO−92 (TO−226)
LP SUFFIX
CASE 29
Pin 1. Reference
2. Anode
3. Cathode
1
2
3
8
1
PDIP−8
P SUFFIX
CASE 626
Micro8E
DM SUFFIX
CASE 846A
•
•
•
•
•
•
Programmable Output Voltage to 36 V
Voltage Reference Tolerance:
±0.4%,
Typ @ 25°C (TL431B)
Low Dynamic Output Impedance, 0.22
W
Typical
Sink Current Capability of 1.0 mA to 100 mA
Equivalent Full−Range Temperature Coefficient of 50 ppm/°C Typical
Temperature Compensated for Operation over Full Rated Operating
Temperature Range
•
Low Output Noise Voltage
•
Pb−Free Packages are Available
8
1
Cathode 1
N/C 2
N/C 3
N/C 4
(Top View)
8 Reference
7 N/C
6 Anode
5 N/C
8
1
SOIC−8
D SUFFIX
CASE 751
Cathode 1
Anode
2
3
N/C 4
(Top View)
8
7
6
5
Reference
Anode
N/C
This is an internally modified SOIC−8 package. Pins 2, 3, 6 and
7 are electrically common to the die attach flag. This internal
lead frame modification increases power dissipation capability
when appropriately mounted on a printed circuit board. This
modified package conforms to all external dimensions of the
standard SOIC−8 package.
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 13 of this data sheet.
DEVICE MARKING INFORMATION
See general marking information in the device marking
section on page 15 of this data sheet.
©
Semiconductor Components Industries, LLC, 2010
July, 2010
−
Rev. 31
1
Publication Order Number:
TL431/D
TL431, A, B Series, NCV431A, B
Symbol
Cathode
(K)
Reference
(R)
800
Anode
(A)
Reference
(R)
800
20 pF
Representative Schematic Diagram
Component values are nominal
Cathode (K)
Representative Block Diagram
Reference
(R)
Cathode
(K)
2.4 k
3.28 k
20 pF
7.2 k
150
4.0 k
10 k
+
-
2.5 V
ref
1.0 k
800
Anode (A)
Anode (A)
This device contains 12 active transistors.
MAXIMUM RATINGS
(Full operating ambient temperature range applies, unless otherwise noted.)
Rating
Cathode to Anode Voltage
Cathode Current Range, Continuous
Reference Input Current Range, Continuous
Operating Junction Temperature
Operating Ambient Temperature Range
TL431I, TL431AI, TL431BI
TL431C, TL431AC, TL431BC
NCV431AI, NCV431B, TL431BV
Storage Temperature Range
Total Power Dissipation @ T
A
= 25°C
Derate above 25°C Ambient Temperature
D, LP Suffix Plastic Package
P Suffix Plastic Package
DM Suffix Plastic Package
Total Power Dissipation @ T
C
= 25°C
Derate above 25°C Case Temperature
D, LP Suffix Plastic Package
P Suffix Plastic Package
ESD Rating
Symbol
V
KA
I
K
I
ref
T
J
T
A
Value
37
−100
to +150
−0.05
to +10
150
−40
to +85
0 to +70
−40
to +125
−65
to +150
°C
W
0.70
1.10
0.52
P
D
1.5
3.0
HBM
MM
>2000
>200
V
W
Unit
V
mA
mA
°C
°C
T
stg
P
D
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
RECOMMENDED OPERATING CONDITIONS
Condition
Cathode to Anode Voltage
Cathode Current
Symbol
V
KA
I
K
Min
V
ref
1.0
Max
36
100
Unit
V
mA
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction−to−Ambient
Thermal Resistance, Junction−to−Case
Symbol
R
qJA
R
qJC
D, LP Suffix
Package
178
83
P Suffix
Package
114
41
DM Suffix
Package
240
−
Unit
°C/W
°C/W
http://onsemi.com
2
TL431, A, B Series, NCV431A, B
ELECTRICAL CHARACTERISTICS
(T
A
= 25°C, unless otherwise noted.)
TL431I
Characteristic
Reference Input Voltage (Figure 1)
V
KA
= V
ref
, I
K
= 10 mA
T
A
= 25°C
T
A
= T
low
to T
high
(Note 1)
Reference Input Voltage Deviation Over
Temperature Range (Figure 1, Notes 1, 2)
V
KA
= V
ref,
I
K
= 10 mA
Ratio of Change in Reference Input Voltage to Change
in Cathode to Anode Voltage
I
K
= 10 mA (Figure 2),
DV
KA
= 10 V to V
ref
DV
KA
= 36 V to 10 V
Reference Input Current (Figure 2)
I
K
= 10 mA, R1 = 10 k, R2 =
∞
T
A
= 25°C
T
A
= T
low
to T
high
(Note 1)
Reference Input Current Deviation Over
Temperature Range (Figure 2, Note 1, 4)
I
K
= 10 mA, R1 = 10 k, R2 =
∞
Minimum Cathode Current For Regulation
V
KA
= V
ref
(Figure 1)
Off−State Cathode Current (Figure 3)
V
KA
= 36 V, V
ref
= 0 V
Dynamic Impedance (Figure 1, Note 3)
V
KA
= V
ref
,
DI
K
= 1.0 mA to 100 mA
f
≤
1.0 kHz
1. T
low
Symbol
V
ref
2.44
2.41
DV
ref
−
2.495
−
7.0
2.55
2.58
30
2.44
2.423
−
2.495
−
3.0
2.55
2.567
17
mV
Min
Typ
Max
Min
TL431C
Typ
Max
Unit
V
DV
DV
ref
−
−
−1.4
−1.0
−2.7
−2.0
−
−
−1.4
−1.0
−2.7
−2.0
mV/V
KA
I
ref
−
−
DI
ref
−
1.8
−
0.8
4.0
6.5
2.5
−
−
−
1.8
−
0.4
4.0
5.2
1.2
mA
mA
I
min
I
off
|Z
KA
|
−
−
−
0.5
20
0.22
1.0
1000
0.5
−
−
−
0.5
20
0.22
1.0
1000
0.5
mA
nA
W
=
−40°C
for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431AIDM, TL431IDM, TL431BIDM;
= 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM,
TL431ACDM, TL431BCDM
T
high
= +85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM
= +70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM,
TL431BCDM
2. The deviation parameter
DV
ref
is defined as the difference between the maximum and minimum values obtained over the full operating
ambient temperature range that applies.
V
ref
max
DV
ref
= V
ref
max
-V
ref
min
DT
A
= T
2
- T
1
V
ref
min
T1
T2
Ambient Temperature
D
V
The average temperature coefficient of the reference input voltage,
aV
ref
is defined as:
V
ppm
+
ref
_C
V
ref
ref
@ 25_C
D
T
A
X 106
+
x 10 6
ref
D
T (V @ 25_C)
A ref
D
V
aV
ref
can be positive or negative depending on whether V
ref
Min or V
ref
Max occurs at the lower ambient temperature. (Refer to Figure 6.)
Example :
DV
V
ref
+
8.0 mV and slope is positive,
@ 25_C
+
2.495 V,
DT
+
70_C
A
D
V
a
V
ref
+
0.008 x 106
+
45.8 ppm
_C
70 (2.495)
ref
KA
3. The dynamic impedance Z
KA
is defined as:
|Z KA|
+
. When the device is programmed with two external resistors, R1 and R2,
D
I
K
(refer to Figure 2) the total dynamic impedance of the circuit is defined as:
|Z KA |
[
|Z KA| 1
)
R1
R2
http://onsemi.com
3
TL431, A, B Series, NCV431A, B
ELECTRICAL CHARACTERISTICS
(T
A
= 25°C, unless otherwise noted.)
TL431BC / TL431BI /
TL431BV /
NCV431BV
Max
Min
Typ
Max
Unit
V
2.47
2.44
DV
ref
−
2.495
−
7.0
2.52
2.55
30
2.47
2.453
−
2.495
−
3.0
2.52
2.537
17
2.485
2.475
−
2.495
2.495
3.0
2.505
2.515
17
mV
TL431AI / NCV431AI
Characteristic
Reference Input Voltage (Figure 1)
V
KA
= V
ref
, I
K
= 10 mA
T
A
= 25°C
T
A
= T
low
to T
high
Reference Input Voltage Deviation Over
Temperature Range (Figure 1, Notes 4, 5)
V
KA
= V
ref,
I
K
= 10 mA
Ratio of Change in Reference Input Voltage to
Change in Cathode to Anode Voltage
I
K
= 10 mA (Figure 2),
DV
KA
= 10 V to V
ref
DV
KA
= 36 V to 10 V
Reference Input Current (Figure 2)
I
K
= 10 mA, R1 = 10 k, R2 =
∞
T
A
= 25°C
T
A
= T
low
to T
high
(Note 4)
Reference Input Current Deviation Over
Temperature Range (Figure 2, Note 4)
I
K
= 10 mA, R1 = 10 k, R2 =
∞
Minimum Cathode Current For Regulation
V
KA
= V
ref
(Figure 1)
Off−State Cathode Current (Figure 3)
V
KA
= 36 V, V
ref
= 0 V
Dynamic Impedance (Figure 1, Note 6)
V
KA
= V
ref
,
DI
K
= 1.0 mA to 100 mA
f
≤
1.0 kHz
4. T
low
Symbol
V
ref
Min
Typ
Max
Min
TL431AC
Typ
DV
DV
ref
−
−
−1.4
−1.0
−2.7
−2.0
−
−
−1.4
−1.0
−2.7
−2.0
−
−
−1.4
−1.0
−2.7
−2.0
mV/V
KA
I
ref
−
−
DI
ref
−
1.8
−
0.8
4.0
6.5
2.5
−
−
−
1.8
−
0.4
4.0
5.2
1.2
−
−
−
1.1
−
0.8
2.0
4.0
2.5
mA
mA
I
min
I
off
|Z
KA
|
−
−
−
0.5
20
0.22
1.0
1000
0.5
−
−
−
0.5
20
0.22
1.0
1000
0.5
−
−
−
0.5
0.23
0.14
1.0
500
0.3
mA
nA
W
=
−40°C
for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431BV, TL431AIDM, TL431IDM,
TL431BIDM, NCV431AIDMR2, NCV431AIDR2
= 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM,
TL431ACDM, TL431BCDM
T
high
= +85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM
= +70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM,
TL431BCDM
= +125°C TL431BV, NCV431AIDMR2, NCV431AIDR2, NCV431BVDMR2G
5. The deviation parameter
DV
ref
is defined as the difference between the maximum and minimum values obtained over the full operating
ambient temperature range that applies.
V
ref
max
DV
ref
= V
ref
max
-V
ref
min
DT
A
= T
2
- T
1
V
ref
min
T1
T2
Ambient Temperature
D
V
ppm
+
V
ref
_C
V
ref
ref
@ 25_C
D
T
A
X 106
The average temperature coefficient of the reference input voltage,
aV
ref
is defined as:
x 10 6
ref
+
D
T (V @ 25_C)
A ref
D
V
aV
ref
can be positive or negative depending on whether V
ref
Min or V
ref
Max occurs at the lower ambient temperature. (Refer to Figure 6.)
Example :
DV
V
ref
+
8.0 mV and slope is positive,
@ 25_C
+
2.495 V,
DT
+
70_C
A
D
V
a
V
ref
+
0.008 x 106
+
45.8 ppm
_C
70 (2.495)
ref
KA
6. The dynamic impedance Z
KA
is defined as
|Z KA|
+
When the device is programmed with two external resistors, R1 and R2, (refer
D
I
K
to Figure 2) the total dynamic impedance of the circuit is defined as:
|Z KA |
[
|Z KA| 1
)
R1
R2
7. NCV431AIDMR2, NCV431AIDR2, NCV431BVDMR2G T
low
=
−40°C,
T
high
= +125°C. Guaranteed by design. NCV prefix is for automotive
and other applications requiring site and change control.
http://onsemi.com
4