20ns (3.3 volt supply) maximum address access time
Asynchronous operation for compatibility with industry-
standard 512K x 8 SRAMs
TTL compatible inputs and output levels, three-state
bidirectional data bus
Typical radiation performance
- Total dose: 50krads
- >100krads(Si), for any orbit, using Aeroflex UTMC
patented shielded package
- SEL Immune >80 MeV-cm
2
/mg
- LET
TH
(0.25) = >10 MeV-cm
2
/mg
- Saturated Cross Section cm
2
per bit, 5.0E-9
- <1E-8 errors/bit-day, Adams 90% geosynchronous
heavy ion
Packaging options:
- 36-lead ceramic flatpack (3.42 grams)
- 36-lead flatpack shielded (10.77 grams)
Standard Microcircuit Drawing 5962-99607
- QML T and Q compliant
INTRODUCTION
The QCOTS
TM
UT8Q512 Quantified Commercial Off-the-
Shelf product is a high-performance CMOS static RAM
organized as 524,288 words by 8 bits. Easy memory expansion
is provided by an active LOW Chip Enable (E), an active LOW
Output Enable (G), and three-state drivers. This device has a
power-down feature that reduces power consumption by more
than 90% when deselected
.
Writing to the device is accomplished by taking Chip Enable
one (E) input LOW and Write Enable (W) inputs LOW. Data on
the eight I/O pins (DQ
0
through DQ
7
) is then written into the
location specified on the address pins (A
0
through A
18
). Reading
from the device is accomplished by taking Chip Enable one (E)
and Output Enable (G) LOW while forcing Write Enable (W)
HIGH. Under these conditions, the contents of the memory
location specified by the address pins will appear on the I/O pins.
The eight input/output pins (DQ
0
through DQ
7
) are placed in a
high impedance state when the device is deselected (E, HIGH),
the outputs are disabled (G HIGH), or during a write operation
(E LOWand W LOW).
Clk. Gen.
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
Pre-Charge Circuit
Row Select
Memory Array
1024 Rows
512x8 Columns
I/O Circuit
Column Select
Data
Control
CLK
Gen.
A10
A11
A12
A13
A14
A15
A16
A17
A18
DQ
0
- DQ
7
E
W
G
Figure 1. UT8Q512 SRAM Block Diagram
1
DEVICE OPERATION
A0
A1
A2
A3
A4
E
DQ0
DQ1
V
DD
V
SS
DQ2
DQ3
W
A5
A6
A7
A8
A9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
NC
A18
A17
A16
A15
G
DQ7
DQ6
V
SS
V
DD
DQ5
DQ4
A14
A13
A12
A11
A10
NC
The UT8Q512 has three control inputs called Enable 1 (E), Write
Enable (W), and Output Enable (G); 19 address inputs, A(18:0);
and eight bidirectional data lines, DQ(7:0). E Device Enable
controls device selection, active, and standby modes. Asserting
E enables the device, causes I
DD
to rise to its active value, and
decodes the 19 address inputs to select one of 524,288 words in
the memory. W controls read and write operations. During a read
cycle, G must be asserted to enable the outputs.
Table 1. Device Operation Truth Table
G
X
1
X
W
X
0
1
1
E
1
0
0
0
I/O Mode
3-state
Data in
3-state
Data out
Mode
Standby
Write
Read
2
Read
Figure 2. 25ns SRAM Pinout (36)
1
0
PIN NAMES
A(18:0)
DQ(7:0)
E
W
G
V
DD
V
SS
Address
Data Input/Output
Enable
Write Enable
Output Enable
Power
Ground
Notes:
1. “X” is defined as a “don’t care” condition.
2. Device active; outputs disabled.
READ CYCLE
A combination of W greater than V
IH
(min) and E less than V
IL
(max) defines a read cycle. Read access time is measured from
the latter of Device Enable, Output Enable, or valid address to
valid data output.
SRAM Read Cycle 1, the Address Access in figure 3a, is
initiated by a change in address inputs while the chip is enabled
with G asserted and W deasserted. Valid data appears on data
outputs DQ(7:0) after the specified t
AVQV
is satisfied. Outputs
remain active throughout the entire cycle. As long as Device
Enable and Output Enable are active, the address inputs may
change at a rate equal to the minimum read cycle time (t
AVAV
).
SRAM read Cycle 2, the Chip Enable - Controlled Access in
figure 3b, is initiated by E going active while G remains asserted,
W remains deasserted, and the addresses remain stable for the
entire cycle. After the specified t
ETQV
is satisfied, the eight-bit
word addressed by A(18:0) is accessed and appears at the data
outputs DQ(7:0).
SRAM read Cycle 3, the Output Enable - Controlled Access in
figure 3c, is initiated by G going active while E is asserted, W
is deasserted, and the addresses are stable. Read access time is
t
GLQV
unless t
AVQV
or t
ETQV
have not been satisfied.
2
WRITE CYCLE
A combination of W less than V
IL
(max) and E less than
V
IL
(max) defines a write cycle. The state of G is a “don’t care”
for a write cycle. The outputs are placed in the high-impedance
state when either G is greater than V
IH
(min), or when W is less
than V
IL
(max).
Write Cycle 1, the Write Enable - Controlled Access in figure
4a, is defined by a write terminated by W going high, with E
still active. The write pulse width is defined by t
WLWH
when the
write is initiated by W, and by t
ETWH
when the write is initiated
by E. Unless the outputs have been previously placed in the high-
impedance state by G, the user must wait t
WLQZ
before applying
data to the nine bidirectional pins DQ(7:0) to avoid bus
contention.
Write Cycle 2, the Chip Enable - Controlled Access in figure
4b, is defined by a write terminated by the latter of E going
inactive. The write pulse width is defined by t
WLEF
when the
write is initiated by W, and by t
ETEF
when the write is initiated
by the E going active. For the W initiated write, unless the
outputs have been previously placed in the high-impedance state
by G, the user must wait t
WLQZ
before applying data to the eight
bidirectional pins DQ(7:0) to avoid bus contention.
TYPICAL RADIATION HARDNESS
Table 2. Typical Radiation Hardness
Design Specifications
1
Total Dose
Heavy Ion
Error Rate
2
50
<1E-8
krad(Si) nominal
Errors/Bit-Day
Notes:
1. The SRAM will not latchup during radiation exposure under recommended
operating conditions.
2. 90% worst case particle environment, Geosynchronous orbit, 100 mils of
Aluminum.
3
ABSOLUTE MAXIMUM RATINGS
1
(Referenced to V
SS
)
SYMBOL
V
DD
V
I/O
T
STG
P
D
T
J
Θ
JC
I
I
PARAMETER
DC supply voltage
Voltage on any pin
Storage temperature
Maximum power dissipation
Maximum junction temperature
2
Thermal resistance, junction-to-case
3
DC input current
LIMITS
-0.5 to 4.6V
-0.5 to 4.6V
-65 to +150°C
1.0W
+150°C
10°C/W
±
10 mA
Notes:
1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device
at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability and performance.
2. Maximum junction temperature may be increased to +175°C during burn-in and steady-static life.
3. Test per MIL-STD-883, Method 1012.
RECOMMENDED OPERATING CONDITIONS
SYMBOL
V
DD
T
C
PARAMETER
Positive supply voltage
Case temperature range
LIMITS
3.0 to 3.6V
(C) screening: -55° to +125°C
(E) screening: -40° to +125°C
V
IN
DC input voltage
0V to V
DD
4
DC ELECTRICAL CHARACTERISTICS (Pre/Post-Radiation)*
(-55°C to +125°C for (C) screening and -40
o
C to +125
o
C for (W) screening) (V
DD
= 3.3V + 0.3)
SYMBOL
V
IH
V
IL
V
OL1
V
OL2
V
OH1
V
OH2
C
IN1
C
IO1
I
IN
I
OZ
PARAMETER
High-level input voltage
Low-level input voltage
Low-level output voltage
Low-level output voltage
High-level output voltage
High-level output voltage
Input capacitance
Bidirectional I/O capacitance
Input leakage current
Three-state output leakage current
(CMOS)
(CMOS)
I
OL
= 8mA, V
DD
=3.0V
I
OL
= 200µA,V
DD
=3.0V
I
OH
= -4mA,V
DD
=3.0V
I
OH
= -200µA,V
DD
=3.0V
ƒ
= 1MHz @ 0V
ƒ
= 1MHz @ 0V
V
SS
< V
IN
< V
DD,
V
DD
= V
DD
(max)
0V < V
O
< V
DD
V
DD
= V
DD
(max)
G = V
DD
(max)
0V < V
O
< V
DD
Inputs: V
IL
= 0.8V,
V
IH
= 2.0V
I
OUT
= 0mA
V
DD
= V
DD
(max)
Inputs: V
IL
= 0.8V,
V
IH
= 2.0V
I
OUT
= 0mA
V
DD
= V
DD
(max)
Inputs: V
IL
= V
SS
I
OUT
= 0mA
E = V
DD
- 0.5
V
DD
= V
DD
(max)
V
IH
= V
DD
- 0.5V
-55°C and 25°C
-40
o
C and 25
o
C
+125°C
-2
-2
2.4
V
DD
-0.10
10
12
2
2
CONDITION
MIN
2.0
0.8
0.4
0.08
MAX
UNIT
V
V
V
V
V
V
pF
pF
µA
µA
I
OS2, 3
I
DD
(OP)
Short-circuit output current
Supply current operating
@ 1MHz
-90
90
125
mA
mA
I
DD1
(OP)
Supply current operating
@40MHz
180
mA
I
DD2
(SB)
Nominal standby supply current
@0MHz
6
6
15
mA
mA
mA
Notes:
* Post-radiation performance guaranteed at 25°C per MIL-STD-883 Method 1019.
1. Measured only for initial qualification and after process or design changes that could affect input/output capacitance.
2. Supplied as a design limit but not guaranteed or tested.
3. Not more than one output may be shorted at a time for maximum duration of one second.
[i=s] This post was last edited by bqgup on 2019-4-26 19:51 [/i] [postbg]3.jpg[/postbg][font=黑体][size=5]Digital tube clock written in Verilog HDL language[/size][/font][font=黑体][size=5] [/size][/font]...
We purchased several M430F5438A development boards and hope to develop FFT. However, when using the MSP-EXP430F5438 _User_Expertience (slac2271) provided by TI, the link error is as follows:
“
Linking...
Imagine being able to change your project MCU card according to your needs, almost like upgrading your computerhttps://www.hackster.io/MakerIoT2020/interchangeable-esp12-e-card-074268...
Why can't the internal resistance of a diode be ignored when the current is large? According to 1/rbe being approximately equal to Id/Ut, shouldn't the internal resistance be smaller when the current ...
I was browsing forums and news these days, and suddenly saw a new term - Wi-Fi 7
....Um....
No, wasn’t Wi-Fi 6 being promoted before? What the hell, I haven’t even used a Wi-Fi 6 router and I’m planni...
The circuit structure is shown in Figure W-1. The differential circuit can convert a rectangular wave into a sharp pulse wave. The output waveform of this circuit only reflects the sudden change o...[Details]
On November 9, Unisoc held its 2020 Autumn Conference with the theme of "Elephants Born from Chips" online. At the conference, Unisoc officially released its 5G RF front-end solution, and launched ne...[Details]
The reporter recently learned from the Sichuan Provincial Department of Economy and Information that Sichuan has taken six measures to build a leading vanadium battery energy storage industry base in ...[Details]
Car camera systems include but are not limited to camera monitoring systems (CMS), on-board video driving recording systems, car streaming rearview mirrors, car infrared detection devices, panoramic ...[Details]
1. Ordinary version, output power 2x1W, 8 ohm load, no external power supply required, with DC volume adjustment potentiometer and power switch, working indicator LED, using high-end LM4866MT as po...[Details]
1 Introduction At present, the most widely used codec in China is the PT2262 encoding chip with 531441 (3 12 ) states produced by Princeton Company and the matching PT2272 decoding chip. However, o...[Details]
Everyone should be very familiar with true wireless Bluetooth headsets. Almost all mobile phone manufacturers are making similar products because they are convenient to use and are a very good access...[Details]
1. Introduction
Wireless Sensor Network (WSN) is a self-organizing network that achieves a specific task through the collaborative work of a large number of low-cost, resource-constrained sensor ...[Details]
7 working modes: fiq/irq/abt/und/sys/usr/svc. Switched by "MSR cpsr_c,#0xdx". Enters svc mode at power-on. The difference between svc and usr is that svc can switch to any other mode freely through...[Details]
For high-power
UPS
, if the UPS rectifier is a three-phase full-controlled bridge 6-pulse rectifier, the harmonics generated by the rectifier account for nearly 25-33% of all harmonics, whi...[Details]
This article mainly analyzes the bare metal. There will be an article analyzing the interrupt principle under Linux later As we all know, after 2440 starts, it starts from address 0. Let's analyz...[Details]
Abstract: Aiming at the fully digital controlled UPS system, combined with the principle of phase-locked loop, a high-precision digital phase-locked control scheme based on DSP TMS320F2808 is propo...[Details]
Transmitters are the most commonly used transmitters in industrial practice. They have unique advantages and are favored by users. However, in actual use of transmitters, many users find that the tr...[Details]
Infineon participates in TRUSTECH 2023 : demonstrating high-performance license identification and payment transactions based on TEGRION and SECORA Pay solutions at the mini airport exhibition...[Details]
CRC test
CRC Check Utility Library In the field of data storage and data communication, in order to ensure the correctness of data, error detection has to be used. Among the many error det...[Details]