The UT54ACS163 and the UT54ACTS163 are synchronous
presettable 4-bit binary counters that feature internal carry look-
ahead logic for high-speed counting designs. Synchronous op-
eration occurs by having all flip-flops clocked simultaneously
so that the outputs change coincident with each other when in-
structed by the count-enable inputs and internal gating. A buff-
ered clock input triggers the four flip-flops on the rising (posi-
tive-going) edge of the clock input waveform.
The counters are fully programmable (i.e., they may be preset
to any number between 0 and 15). Presetting is synchronous;
applying a low level at the load input disables the counter and
causes the outputs to agree with the load data after the next clock
pulse.
The clear function is synchronous and a low level at the clear
input sets all four of the flip-flop outputs low after the next clock
pulse. This synchronous clear allows the count length to be mod-
ified by decoding the Q outputs for the maximum count desired.
The counters feature a fully independent clock circuit. Changes
at control inputs (ENP, ENT, or LOAD) that modify the operat-
ing mode have no effect on the contents of the counter until
clocking occurs. The function of the counter (whether enabled,
disabled, loading, or counting) will be dictated solely by the
conditions meeting the stable setup and hold times.
The devices are characterized over full military temperature
range of -55°C to +125°C.
1
PINOUTS
16-Pin DIP
Top View
CLR
CLK
A
B
C
D
ENP
V
SS
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
V
DD
RCO
Q
A
Q
B
Q
C
Q
D
ENT
LOAD
16-Lead Flatpack
Top View
CLR
CLK
A
B
C
D
ENP
V
SS
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
V
DD
RCO
Q
A
Q
B
Q
C
Q
D
ENT
LOAD
LOGIC SYMBOL
(1)
CLR
(9)
LOAD
ENT
ENP
CLK
A
B
C
D
(10)
(7)
(2)
(3)
(4)
(5)
(6)
CTRDIV 16
5CT=0
M1
M2
3CT = 15
G3
G4
C5/2,3,4+
1,5D
(1)
(2)
(4)
(8)
(14)
(13)
(12)
(11)
Q
A
Q
B
Q
C
Q
D
(15)
RCO
Note:
1. Logic symbol in accordance with ANSI/IEEE Std 91-1984 and IEC Publi-
cation 617-12.
FUNCTION TABLE
Operating Mode
Reset (Clear)
Parallel Load
CLR
l
h
3
h
3
Count
Inhibit
h
3
h
3
h
3
CLK
↑
↑
↑
↑
ENP
X
X
X
h
l
2
X
ENT
X
X
X
h
X
l
2
LOAD
X
l
l
h
h
3
h
3
DATA A,B,C,D
X
l
h
X
X
X
Q
N
L
L
H
Count
Q
N
Q
N
RCO
L
L
1
1
1
X
X
L
H = High voltage level h = High voltage level one setup time prior to the low-to-high clock transition
L = Low voltage level
l
= Low voltage level one setup time prior to the low-to-high clock transition
Notes:
1. The RCO output is high when ENT is high and the counter is at terminal count HHHH.
2. The high-to-low transition of ENP or ENT should only occur while CLK is high for conventional operations.
3. The low-to-high transition of LOAD or CLR should only occur while CLK is high for conventional operations.
LOGIC DIAGRAM
(2)
(1)
D
C
Q
Q
CLK
CLR
(14)
Q
A
(9)
LOAD
(7)
ENP
(10)
ENT
(3)
DATA A
D
C
Q
Q
(13)
Q
B
DATA B
(4)
D
C
Q
Q
(12)
Q
C
DATA C
(5)
D
C
Q
Q
(11) Q
D
DATA D
(6)
(15)
RCO
2
OPERATIONAL ENVIRONMENT
1
PARAMETER
Total Dose
SEU Threshold
2
SEL Threshold
Neutron Fluence
LIMIT
1.0E6
80
120
1.0E14
UNITS
rads(Si)
MeV-cm
2
/mg
MeV-cm
2
/mg
n/cm
2
Notes:
1. Logic will not latchup during radiation exposure within the limits defined in the table.
2. Device storage elements are immune to SEU affects.
ABSOLUTE MAXIMUM RATINGS
SYMBOL
V
DD
V
I/O
T
STG
T
J
T
LS
Θ
JC
I
I
P
D
PARAMETER
Supply voltage
Voltage any pin
Storage Temperature range
Maximum junction temperature
Lead temperature (soldering 5 seconds)
Thermal resistance junction to case
DC input current
Maximum power dissipation
LIMIT
0.3 to 7.0
-.3 to V
DD
+.3
-65 to +150
+175
+300
20
±10
1
UNITS
V
V
°C
°C
°C
°C/W
mA
W
Note:
1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the
device at these or any other conditions beyond limits indicated in the operational sections is not recommended. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
RECOMMENDED OPERATING CONDITIONS
SYMBOL
V
DD
V
IN
T
C
PARAMETER
Supply voltage
Input voltage any pin
Temperature range
LIMIT
4.5 to 5.5
0 to V
DD
-55 to + 125
UNITS
V
V
°C
3
DC ELECTRICAL CHARACTERISTICS
7
(V
DD
= 5.0V
±
10%; V
SS
= 0V
6
, -55°C < T
C
< +125°C); Unless otherwise noted, Tc is per the temperature range ordered.
SYMBOL
V
IL
PARAMETER
Low-level input voltage
1
ACTS
ACS
High-level input voltage
1
ACTS
ACS
Input leakage current
ACTS/ACS
Low-level output voltage
3
ACTS
ACS
High-level output voltage
3
ACTS
ACS
Short-circuit output current
2 ,4
ACTS/ACS
Output current
10
(Sink)
I
OH
Output current
10
(Source)
P
total
I
DDQ
ΔI
DDQ
Power dissipation
2, 8, 9
Quiescent Supply Current
Quiescent Supply Current Delta
ACTS
V
IN
= V
DD
or V
SS
I
OL
= 8.0mA
I
OL
= 100μA
I
OH
= -8.0mA
I
OH
= -100μA
V
O
= V
DD
and V
SS
V
IN
= V
DD
or V
SS
V
OL
= 0.4V
V
IN
= V
DD
or V
SS
V
OH
= V
DD
- 0.4V
C
L
= 50pF
V
DD
= 5.5V
For input under test
V
IN
= V
DD
- 2.1V
For all other inputs
V
IN
= V
DD
or V
SS
V
DD
= 5.5V
C
IN
C
OUT
Input capacitance
5
Output capacitance
5
ƒ
= 1MHz @ 0V
ƒ
= 1MHz @ 0V
15
15
pF
pF
1.9
10
1.6
mW/
MHz
μA
mA
-8
mA
.7V
DD
V
DD
- 0.25
-200
8
200
.5V
DD
.7V
DD
-1
1
CONDITION
MIN
MAX
0.8
.3V
DD
UNIT
V
V
IH
V
I
IN
V
OL
μA
0.40
0.25
V
V
OH
V
I
OS
I
OL
mA
mA
4
Notes:
1. Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: V
IH
= V
IH
(min) + 20%, - 0%; V
IL
= V
IL
(max) + 0%, -
50%, as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices may be tested using any input voltage within the above specified range, but are
guaranteed to V
IH
(min) and V
IL
(max).
2. Supplied as a design limit but not guaranteed or tested.
3. Per MIL-PRF-38535, for current density
≤
5.0E5 amps/cm
2
, the maximum product of load capacitance (per output buffer) times frequency should not exceed 3,765
pF/MHz.
4. Not more than one output may be shorted at a time for maximum duration of one second.
5. Capacitance measured for initial qualification and when design changes may affect the value. Capacitance is measured between the designated terminal and V
SS
at
frequency of 1MHz and a signal amplitude of 50mV rms maximum.
6. Maximum allowable relative shift equals 50mV.
7. All specifications valid for radiation dose
≤1E6
rads(Si).
8. Power does not include power contribution of any TTL output sink current.
9. Power dissipation specified per switching output.
10. This value is guaranteed based on characterization data, but not tested.
Because I have used Simplicity Studio V5 before , I did not install it again. I unpacked the PG22 development board and connected the Micro-B cable. Simplicity Studio V5 automatically recognized the d...
Imagine walking into your living room and your smart TV automatically switching from your kid’s Netflix feed to yours. Or walking into your home office and your laptop waking up to greet you. Or walki...
[i=s] This post was last edited by a media student on 2018-10-12 21:15[/i] [align=center][size=4][color=#9932cc]【GD32F350 Urban Youth Family Security Guard】Post 8 How does GD32F350 receive OV5640 data...
8 parallel functional units, 2 sets of registers, separate program and data storage; 256-bit instruction fetch package, which can fetch 8 32-bit instructions at a time; 2-way 64-bit data load/store. A...
Jiwei.com reported that the competition between China and the United States in the semiconductor field has entered a white-hot state. In order to prevent China from gaining a competitive advantage, t...[Details]
The STM32 V3.3.0 library contains a folder called CMSIS, which is the software interface standard for arm Cortex microcontrollers. Now I will make a brief analysis of my actual work: 1. Sele...[Details]
On October 29-30, the "Digital Southern Grid" Forum to Support the Development of the Guangdong-Hong Kong-Macao Greater Bay Area was held in Guangzhou. China Southern Power Grid announced that it w...[Details]
Recently, Korean researchers said that they are commercializing the world's first Micro LED roll transfer process technology, which can significantly improve the production efficiency of MicroLED dis...[Details]
On August 3, Liu Haijun, Party Secretary and Director of the Hubei Provincial Department of Economy and Information Technology, visited the East Lake New Technology Development Zone to investigate ke...[Details]
1 Introduction For the plastic bottle making process, the plastic is heated to a molten state, and becomes a tube embryo through high-pressure injection. After cooling for a short time, it is blown b...[Details]
Recently, China Southern Power Grid Co., Ltd. issued the "Action Plan for Digital Transformation and Digital Southern Power Grid Construction (2019 Edition)" (hereinafter referred to as the "Plan")...[Details]
Jiangsu Changdian Technology Co., Ltd. (hereinafter referred to as "Changdian Technology") recently announced that the company and its holding subsidiaries have received subsidies of 39.9641 million ...[Details]
Fieldbus technology, with its unique technical advantages and characteristics, has been increasingly widely used in the field of modern distributed measurement and control technology. The main cont...[Details]
The 89S51 and 89C51 of ATMEL's 89S51 series have the same functions and compatible instructions. The HEX program can be used directly without any conversion. The 89S51 only adds a watchdog function co...[Details]
For those Chinese new energy vehicle companies that are or are preparing to go overseas in a big way , the fantasy of "Fairplay" should be abandoned as soon as possible. "We formally urge the CEOs ...[Details]
1 Hardware Platform
1.1 A
DSP
-BF561 processor
Analog Devices
' Blackfin processor family has been further expanded
with the introduction of the ADSP-BF561
, which...[Details]
Working principle: It mainly uses DC high voltage electricity to kill cockroaches. However, cockroaches are sensitive to electric fields and dare not climb onto high voltage power grids, so the high ...[Details]
Amplifier designers have long favored the ability to use load-pull systems to develop impedance matching networks for selected transistors. In linear systems, this is simply done by using the complex ...[Details]
On November 2, the 300,000-kilowatt new energy storage project with a total investment of 2.395 billion yuan by Shouhang Energy Group was started and laid the foundation stone in Changji National High...[Details]