X-Y addressing and windowing .................................................................................................................... 10
Temperature diode ....................................................................................................................................... 10
Temperature module .................................................................................................................................... 10
Power supplies and grounds ........................................................................................................................ 12
Biasing and analog signals .......................................................................................................................... 14
Digital signals ............................................................................................................................................... 15
Test signals .................................................................................................................................................. 15
Pad positioning and packaging ...................................................................................................................... 25
Color ............................................................................................................................................................ 28
Document History Page ................................................................................................................................... 32
Output voltage as a function of the number of electrons. ................................................................................... 6
Architecture of the LUPA sensor ........................................................................................................................ 8
Schematic representation of the synchronous pixel as used in the LUPA design .............................................. 8
Schematic representation of the column readout structure. ............................................................................... 9
Schematic representation of a single output stage ............................................................................................. 9
Output voltage of the temperature module versus temperature ......................................................................... 11
Integration and read out in parallel ..................................................................................................................... 12
Principle of non-destructive readout. .................................................................................................................. 12
Figure11a. Schematic of typical decoupling of power supply (source current) .................................................. 13
Figure 11b.Schematic of typical decoupling of power supply (source current) .................................................. 13
Internal timing of the pixel. .................................................................................................................................. 14
Timing of the pixel array ...................................................................................................................................... 16
Document Number: 38-05711 Rev. *C
Page 2 of 32
LUPA-1300
Timing of the y shift register. .............................................................................................................................. 17
Readout time of a line is the sum of the row blanking time and on the line readout time. .................................. 17
Reduced standard ROT by means of Sh_col signal............................................................................................ 18
Only pre_col and Norowsel control signals are required. SH_col is made active low. ....................................... 19
Schematic of the SPI interface ........................................................................................................................... 19
Package drawing of the LUPA-1300 sensor ....................................................................................................... 25
Package drawing with die of the LUPA-1300 sensor ......................................................................................... 26
Color filter arrangement on the pixels. ................................................................................................................ 27
Transmission characteristics of the D263 glass used as protective cover for the LUPA-1300 sensors. ............ 27
Transmission characteristics of the S8612 glass used as NIR cut-off filter. ....................................................... 28
General specifications of the LUPA sensor ........................................................................................................ 4
Electrical-optical specifications of the LUPA-1300 sensor ................................................................................. 4
Features and general specifications ................................................................................................................... 5
Absolute maximum ratings ................................................................................................................................. 6
Advantages and disadvantages of non-destructive readout. .............................................................................. 12
Power supplies used in the LUPA design ........................................................................................................... 13
Overview of biasing signals ................................................................................................................................ 14
Overview of the internal and external pixel array signals. .................................................................................. 15
Typical timings of the pixel array ........................................................................................................................ 16
Pin description of the assembled LUPA-1300 sensor in the PGA 144 package. ............................................... 21
Document Number: 38-05711 Rev. *C
Page 3 of 32
LUPA-1300
Specifications
General specifications
Table 1. General specifications of the LUPA sensor
Parameter
Pixel architecture
Pixel size
Resolution
Pixel rate
Shutter type
Full frame rate
Package
6T-pixel
14
µm
x 14
µm
1280 x1024
640 MHz
Pipelined snapshot shutter
450 frames/second
Pin grid array 145 pins
Specification
Remarks
Based on the high-fill factor active pixel sensor technology of
FillFactory
The resolution and pixel size results in a 17.9 mm x 14.3 mm optical
active area.
Using a 20 MHz system clock and 16 parallel outputs.
Full snapshot shutter with variable integration time
Frame rate increase possible with ROI read out and/or sub sampling.
PGA pins with 0.46 mm diameter
Electro-optical characteristics
Overview
Table 2. Electrical-optical specifications of the LUPA-1300 sensor
Parameter
FPN
PRNU
Conversion gain
Output signal amplitude
Saturation charge
Sensitivity
Specification
<3% RMS
2% RMS
16 uV/electron
1V
62.500 e-
1500 V.m2/W.s
8.33 V/lux.s
21.43 V/lux.s
Fill Factor
Peak QE * FF
Peak SR * FF
MTF
Temporal Noise
S/N ratio
Parasitic light sensitivity
Power dissipation
Output impedance
50%
15%
0.08 A/W
X: 67%
Y: 66%
45e-
1330
< 0.5%
900 mWatt
200-300 Ohms
Unity gain.
Is more then 60.000 (=1V/16uV/e-) due to non-linearity in saturated
region.
Average white light.
Visible band only (180 lx = 1 W/m2).
Visible + NIR (70 lx = 1 W/m2).
100%-metal and polycide coverage.
See spectral response curve.
@ Nyquist
Dark environment, measured at T=21
o
C.
1330 = 60000:45 = 62 dB.
I.e. sensitivity of the storage node compared to the sensitivity of
photodiode
Typical.
Typical
<10% p/p.
Half saturation.
Remarks
Spectral sensitivity range 400 - 1000 nm
Document Number: 38-05711 Rev. *C
Page 4 of 32
LUPA-1300
Features and general specifications
Table 3. Features and general specifications
Feature
Electronic shutter type
Windowing (ROI)
Read out sequence
Extended dynamic range
X clock
Number of outputs
Supply voltage VDD
Specification/Description
Synchronous pipelined shutter with variable integration time.
Programmable via SPI.
Progressive scan.
Double slope extended dynamic range.
20 MHz (pixel rate of 40 MHz)
16.
Image core supply: Range from 3V to 6 V.
Analog supply: Nominal 5 V.
Digital: Nominal 5 V.
5V (digital supply)
0°C to 60°C, with degradation of dark current.
145-pins Pin Grid Array (PGA).
Logic levels
Operational temperature range
Package
Spectral response curve
Figure 1. Spectral response curve
0.12
0.1
Response (A/W)
0.08
QE=10%
0.06
QE=15%
QE= 20%
0.04
LUPA-1300
0.02
0
400
500
600
700
Wavelength (nm)
800
900
1000
Figure 1
shows the spectral response characteristic. The
curve is measured directly on the pixels. It includes effects of
non-sensitive areas in the pixel, e.g. interconnection lines. The
sensor is light sensitive between 400 and 1000 nm. The peak
QE * FF is 15% approximately between 500 and 700 nm.
Since the Hall effect was discovered more than 100 years ago, its application has gone through three stages:
The first stage is from the discovery of the Hall effect to the early 1940s. Initially, due...
Abstract: Remember before 2010, there were still big differences in the models of USB data cables of various mobile phone brands, so the data cables of different mobile phone manufacturers were not un...
The Battleship STM32 development board and four multimeters of the Atom on Time This content is originally created by firstain, a netizen of EEWORLD forum . If you need to reprint or use it for commer...
[i=s]This post was last edited by btty038 on 2019-10-30 15:44[/i]We all know that before GaN, we rarely used negative voltage in RF amplification or [base station amplification], but after GaN came, e...
This book discusses signal integrity and power integrity issues comprehensively. It mainly covers the overview of signal and power integrity analysis and physical design, the essential meaning of four...
[i=s]This post was last edited by generalcircuits on 2019-6-19 09:08[/i]1. STM321. STM32 application scenariosAnswer: Smart bracelet, micro quadcopter, sweeping robot, industrial automation control, e...