To learn more about ON Semiconductor, please visit our website at
www.onsemi.com
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
March 1996
NDC7002N
Dual N-Channel Enhancement Mode Field Effect Transistor
General Description
These dual N-Channel enhancement mode power field
effect transistors are produced using Fairchild's
proprietary, high cell density, DMOS technology. This
very high density process has been designed to minimize
on-state resistance, provide rugged and reliable
performance and fast switching. These devices is
particularly suited for low voltage applications requiring a
low current high side switch.
Features
0.51A, 50V, R
DS(ON)
= 2
Ω
@ V
GS
=10V
High density cell design for low R
DS(ON)
.
Proprietary SuperSOT
TM
-6 package design using copper
lead frame for superior thermal and electrical capabilities.
is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R
θ
JC
is guaranteed by
design while R
θ
CA
is determined by the user's board design.
Maximum Continuous Source Current
Maximum Pulse Source Current
(Note 2)
Drain-Source Diode Forward Voltage
V
GS
= 0 V, I
S
= 0.51 A
(Note 2)
0.8
0.51
1.5
1.2
A
A
V
P
D
(
t
) =
R
θ
J A
t
)
(
T
J
−
T
A
=
R
θ
J C
R
θ
CA
t
)
+
(
T
J
−
T
A
=
I
2
(
t
) ×
R
DS
(
ON
)
D
T
J
Typical R
θ
JA
for single device operation using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment: