D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
Freescale Semiconductor
Technical Data
Document Number: MRF7S21110H
Rev. 0, 9/2007
RF Power Field Effect Transistors
N - Channel Enhancement - Mode Lateral MOSFETs
Designed for CDMA base station applications with frequencies from 2110 to
2170 MHz. Suitable for CDMA and multicarrier amplifier applications. To be
used in Class AB and Class C for PCN - PCS/cellular radio and WLL
applications.
•
Typical Single - Carrier W - CDMA Performance: V
DD
= 28 Volts, I
DQ
=
1100 mA, P
out
= 33 Watts Avg., Full Frequency Band, 3GPP Test Model 1,
64 DPCH with 50% Clipping, Channel Bandwidth = 3.84 MHz, Input Signal
PAR = 7.5 dB @ 0.01% Probability on CCDF.
Power Gain — 17.3 dB
Drain Efficiency — 32.5%
Device Output Signal PAR — 6.1 dB @ 0.01% Probability on CCDF
ACPR @ 5 MHz Offset — - 38 dBc in 3.84 MHz Channel Bandwidth
•
Capable of Handling 10:1 VSWR, @ 32 Vdc, 2140 MHz, 110 Watts CW
Peak Tuned Output Power
•
P
out
@ 1 dB Compression Point
w
110 Watts CW
Features
•
100% PAR Tested for Guaranteed Output Power Capability
•
Characterized with Series Equivalent Large - Signal Impedance Parameters
•
Internally Matched for Ease of Use
•
Integrated ESD Protection
•
Greater Negative Gate - Source Voltage Range for Improved Class C
Operation
•
Designed for Digital Predistortion Error Correction Systems
•
RoHS Compliant
•
In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.
MRF7S21110HR3
MRF7S21110HSR3
2110 - 2170 MHz, 33 W AVG., 28 V
SINGLE W - CDMA
LATERAL N - CHANNEL
RF POWER MOSFETs
CASE 465- 06, STYLE 1
NI - 780
MRF7S21110HR3
CASE 465A - 06, STYLE 1
NI - 780S
MRF7S21110HSR3
Table 1. Maximum Ratings
Rating
Drain - Source Voltage
Gate - Source Voltage
Operating Voltage
Storage Temperature Range
Case Operating Temperature
Operating Junction Temperature
(1,2)
Symbol
V
DSS
V
GS
V
DD
T
stg
T
C
T
J
Value
- 0.5, +65
- 6.0, +10
32, +0
- 65 to +150
150
225
Unit
Vdc
Vdc
Vdc
°C
°C
°C
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 109 W CW
Case Temperature 78°C, 33 W CW
Symbol
R
θJC
Value
(2,3)
0.37
0.41
Unit
°C/W
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Design Tools (Software & Tools)/Calculators to access MTTF calculators
by product.
3. Refer to AN1955,
Thermal Measurement Methodology of RF Power Amplifiers.
Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
©
Freescale Semiconductor, Inc., 2007. All rights reserved.
MRF7S21110HR3 MRF7S21110HSR3
1
RF Device Data
Freescale Semiconductor
Table 3. ESD Protection Characteristics
Test Methodology
Human Body Model (per JESD22 - A114)
Machine Model (per EIA/JESD22 - A115)
Charge Device Model (per JESD22 - C101)
Class
1B (Minimum)
A (Minimum)
IV (Minimum)
Table 4. Electrical Characteristics
(T
C
= 25°C unless otherwise noted)
Characteristic
Off Characteristics
Zero Gate Voltage Drain Leakage Current
(V
DS
= 65 Vdc, V
GS
= 0 Vdc)
Zero Gate Voltage Drain Leakage Current
(V
DS
= 28 Vdc, V
GS
= 0 Vdc)
Gate - Source Leakage Current
(V
GS
= 5 Vdc, V
DS
= 0 Vdc)
On Characteristics
Gate Threshold Voltage
(V
DS
= 10 Vdc, I
D
= 270
μAdc)
Gate Quiescent Voltage
(V
DD
= 28 Vdc, I
D
= 1100 mAdc, Measured in Functional Test)
Drain - Source On - Voltage
(V
GS
= 10 Vdc, I
D
= 2.7 Adc)
Dynamic Characteristics
(1)
Reverse Transfer Capacitance
(V
DS
= 28 Vdc
±
30 mV(rms)ac @ 1 MHz, V
GS
= 0 Vdc)
Output Equivalent Capacitance
(V
DS
= 28 Vdc
±
30 mV(rms)ac @ 1 MHz, V
GS
= 0 Vdc)
Input Capacitance
(V
DS
= 28 Vdc, V
GS
= 0 Vdc
±
30 mV(rms)ac @ 1 MHz)
C
rss
C
oss
C
iss
—
—
—
7.95
613
232
—
—
—
pF
pF
pF
V
GS(th)
V
GS(Q)
V
DS(on)
1.2
2
0.05
2
2.7
0.1
2.7
3.5
0.3
Vdc
Vdc
Vdc
I
DSS
I
DSS
I
GSS
—
—
—
—
—
—
10
1
1
μAdc
μAdc
μAdc
Symbol
Min
Typ
Max
Unit
Functional Tests
(In Freescale Test Fixture, 50 ohm system) V
DD
= 28 Vdc, I
DQ
= 1100 mA, P
out
= 33 W Avg., f = 2112.5 MHz and f =
2167.5 MHz, Single - Carrier W - CDMA, 3GPP Test Model 1, 64 DPCH, 50% Clipping, PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR
measured in 3.84 MHz Channel Bandwidth @
±5
MHz Offset.
Power Gain
Drain Efficiency
Output Peak - to - Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Input Return Loss
1. Part internally matched both on input and output.
(continued)
G
ps
η
D
PAR
ACPR
IRL
16.5
31
5.7
- 48
—
17.3
32.5
6.1
- 38
- 15
19.5
39
6.5
- 35
—
dB
%
dB
dBc
dB
MRF7S21110HR3 MRF7S21110HSR3
2
RF Device Data
Freescale Semiconductor
Table 4. Electrical Characteristics
(T
C
= 25°C unless otherwise noted)
(continued)
Characteristic
Video Bandwidth @ 90 W PEP P
out
where IM3 = - 30 dBc
(Tone Spacing from 100 kHz to VBW)
ΔIMD3
= IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both
sidebands)
Gain Flatness in 60 MHz Bandwidth @ P
out
= 33 W Avg.
Average Deviation from Linear Phase in 60 MHz Bandwidth
@ P
out
= 110 W CW
Average Group Delay @ P
out
= 110 W CW, f = 2140 MHz
Part - to - Part Insertion Phase Variation @ P
out
= 110 W CW,
f = 2140 MHz, Six Sigma Window
Gain Variation over Temperature
( - 30°C to +85°C)
Output Power Variation over Temperature
( - 30°C to +85°C)
Symbol
VBW
—
10
—
Min
Typ
Max
Unit
MHz
Typical Performances
(In Freescale Test Fixture, 50 ohm system) V
DD
= 28 Vdc, I
DQ
= 1100 mA, 2110 - 2170 MHz Bandwidth
G
F
Φ
Delay
ΔΦ
ΔG
ΔP1dB
—
—
—
—
—
—
0.325
0.772
1.9
39.7
0.011
0.276
—
—
—
—
—
—
dB
°
ns
°
dB/°C
dBm/°C
MRF7S21110HR3 MRF7S21110HSR3
RF Device Data
Freescale Semiconductor
3
R2
V
BIAS
+
R1
C2
C3
C4
+
C5
C6
Z6
Z5
Z7
RF
INPUT
Z8
Z9
Z11
C7
Z10
DUT
Z12
RF
OUTPUT
C8
+
C9
+
C10
C11
+
C12
C13
+
C14
V
SUPPLY
Z1
C1
Z2
Z3
Z4
Z1
Z2
Z3
Z4
Z5
Z6
Z7
1.280″ x 0.084″ Microstrip
0.856″ x 0.084″ Microstrip
0.240″ x 0.280″ Microstrip
0.420″ x 0.880″ Microstrip
0.950″ x 0.0395″ Microstrip
0.526″ x 0.0940″ Microstrip
0.480″ x 1.050″ Microstrip
Z8
Z9
Z10
Z11
Z12
PCB
0.370″ x 0.201″ Microstrip
0.386″ x 0.084″ Microstrip
0.196″ x 0.242″ Microstrip
0.105″ x 0.084″ Microstrip
1.267″ x 0.084″ Microstrip
Arlon CuClad 250GX - 0300 - 55 - 22, 0.030″,
ε
r
= 2.55
Figure 1. MRF7S21110HR3(HSR3) Test Circuit Schematic
Table 5. MRF7S21110HR3(HSR3) Test Circuit Component Designations and Values
Part
C1
C2
C3
C4, C13
C5
C6
C7
C8
C9, C10
C11
C12
C14
R1
R2
Description
15 pF, Chip Capacitor
47
μF,
16 V Tantalum Capacitor
8.2 pF, Chip Capacitor
2.2
μF,
50 V Chip Capacitors
1
μF,
50 V Tantalum Capacitor
5.1 pF Chip Capacitor
16 pF Chip Capacitor
6.8 pF Chip Capacitor
22
μF,
35 V Tantalum Capacitors
0.1
μF
Chip Capacitor
100
μF,
50 V Electrolytic Capacitor
470
μF,
63 V Electrolytic Capacitor
1 KΩ, 1/4 W Chip Resistor
10
Ω,
1/3 W Chip Resistor
Part Number
ATC100B150JT500XT
T491D476K016AT
ATC100B8R2CT500XT
C1825C225J5RAC
T491C105K050AT
ATC100B5R1CT500XT
ATC100B160JT500XT
ATC100B6R8BT500XT
T491X226K035AT
C1206C104K5RAC
MCR63V477M13X26
MCR50V107M8X11
CRCW12061001FKEA
CRCW121010R0FKEA
Manufacturer
ATC
Kemet
ATC
Kemet
Kemet
ATC
ATC
ATC
Kemet
Kemet
Multicomp
Multicomp
Vishay
Vishay
MRF7S21110HR3 MRF7S21110HSR3
4
RF Device Data
Freescale Semiconductor