September 1996
NDT452P
P-Channel Enhancement Mode Field Effect Transistor
General Description
Power SOT P-Channel enhancement mode power field
effect transistors are produced using Fairchild's
proprietary, high cell density, DMOS technology. This very
high density process is especially tailored to minimize
on-state resistance and provide superior switching
performance. These devices are particularly suited for low
voltage applications such as notebook computer power
management and DC motor control.
Features
-3A, -30V. R
DS(ON)
= 0.18
Ω
@ V
GS
= -10V.
High density cell design for extremely low R
DS(ON)
.
High power and current handling capability in a widely used
surface mount package.
____________________________________________________________________________________________________________
D
D
G
D
S
G
S
Absolute Maximum Ratings
Symbol
V
DSS
V
GSS
I
D
P
D
Parameter
Drain-Source Voltage
Gate-Source Voltage
Drain Current
- Continuous
- Pulsed
Maximum Power Dissipation
T
A
= 25°C unless otherwise noted
NDT452P
-30
±20
(Note 1a)
Units
V
V
A
±3
±20
(Note 1a)
(Note 1b)
(Note 1c)
3
1.3
1.1
-65 to 150
W
T
J
,T
STG
Operating and Storage Temperature Range
°C
THERMAL CHARACTERISTICS
R
θ
JA
R
θ
JC
Thermal Resistance, Junction-to-Ambient
Thermal Resistance, Junction-to-Case
(Note 1a)
(Note 1)
42
12
°C/W
°C/W
* Order option J23Z for cropped center drain lead.
© 1997 Fairchild Semiconductor Corporation
NDT452P Rev. C3
Electrical Characteristics
(T
A
= 25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
OFF CHARACTERISTICS
BV
DSS
I
DSS
I
GSSF
I
GSSR
V
GS(th)
R
DS(ON)
Drain-Source Breakdown Voltage
Zero Gate Voltage Drain Current
V
GS
= 0 V, I
D
= -250 µA
V
DS
= -24 V, V
GS
= 0 V
T
J
= 55°C
Gate - Body Leakage, Forward
Gate - Body Leakage, Reverse
V
GS
= 20 V, V
DS
= 0 V
V
GS
= -20 V, V
DS
= 0 V
V
DS
= V
GS
, I
D
= -250 µA
T
J
=125°C
Static Drain-Source On-Resistance
V
GS
= -10 V, I
D
= -3 A
T
J
=125°C
V
GS
= -4.5 V, I
D
= - 2.2 A
I
D(on)
g
FS
C
iss
C
oss
C
rss
t
D(on)
t
r
t
D(off)
t
f
Q
g
Q
gs
Q
gd
On-State Drain Current
V
GS
= -10 V, V
DS
= -5 V
V
GS
= -4.5 V, V
DS
= -5 V
Forward Transconductance
V
DS
= -15 V, I
D
= -3 A
V
DS
= -10 V, V
GS
= 0 V,
f = 1.0 MHz
DYNAMIC CHARACTERISTICS
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
525
300
130
pF
pF
pF
-15
-4.5
3.7
S
-1
-0.85
-2
-1.7
0.15
0.23
0.27
-30
-2
-25
100
-100
V
µA
µA
nA
nA
ON CHARACTERISTICS
(Note 2)
Gate Threshold Voltage
-3
-2.6
0.18
0.32
0.32
A
V
Ω
SWITCHING CHARACTERISTICS
(Note 2)
Turn - On Delay Time
Turn - On Rise Time
Turn - Off Delay Time
Turn - Off Fall Time
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
V
DS
= -10 V,
I
D
= -3 A, V
GS
= -10 V
V
DD
= -10 V, I
D
= -1.0 A,
V
GEN
= -10 V, R
GEN
= 6
Ω
8
15
25
8
15
1.6
4.5
40
40
90
50
25
4
8
ns
ns
ns
ns
nC
nC
nC
NDT452P Rev. C3
Electrical Characteristics
(T
A
= 25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS
I
S
V
SD
Notes:
1. R
θ
JA
is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R
θ
JC
is guaranteed by
design while R
θ
CA
is determined by the user's board design.
Maximum Continuous Drain-Source Diode Forward Current
Drain-Source Diode Forward Voltage
V
GS
= 0 V, I
S
= -3 A
(Note 2)
-2.5
-1.2
A
V
P
D
(
t
) =
R
θ
J A
t
)
(
T
J
−
T
A
=
R
θ
J C
R
θ
CA
t
)
+
(
T
J
−
T
A
=
I
2
(
t
) ×
R
DS
(
ON
)
D
T
J
Typical R
θ
JA
using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:
a. 42
o
C/W when mounted on a 1 in
2
pad of 2oz copper.
b. 95
o
C/W when mounted on a 0.066 in
2
pad of 2oz copper.
c. 110
o
C/W when mounted on a 0.0123 in
2
pad of 2oz copper.
1a
1b
1c
Scale 1 : 1 on letter size paper
2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.
NDT452P Rev. C3
Typical Electrical Characteristics
-18
3
V
GS
= -10V
, DRAIN-SOURCE CURRENT (A)
-15
-8.0
-7.0
-6.0
R
DS(on)
, NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
2.5
-12
-5.0
V
GS
= -4.0V
2
-4.5V
-9
-5.0V
1.5
-4.0
-6
I
D
-3
-3.0
1
-6.0V
-7.0V
-8.0V
-10V
0
0
-1
V
DS
-2
-3
-4
, DRAIN-SOURCE VOLTAGE (V)
-5
0.5
0
-2
-4
-6
I
D
, DRAIN CURRENT (A)
-8
-10
Figure 1. On-Region Characteristics.
Figure 2. On-Resistance Variation with Gate Voltage
and Drain Current.
1.5
3.5
DRAIN-SOURCE ON-RESISTANCE
DRAIN-SOURCE ON-RESISTANCE
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
-50
I
D
= -3A
V
GS
= -10V
R
DS(on)
, NORMALIZED
V
GS
= -4.5 V
3
R
DS(ON)
, NORMALIZED
2.5
TJ = 125°C
-4.5V
2
25°C
1.5
125°C
1
-10V
-10V
25°C
0.5
-25
0
25
50
75
100
T
J
, JUNCTION TEMPERATURE (°C)
125
150
0
-2
-4
-6
I
D
, DRAIN CURRENT (A)
-8
-10
Figure 3. On-Resistance Variation
with Temperature.
Figure 4. On-Resistance Variation with Drain
Current and Temperature.
-10
1.15
TJ = -55°C
GATE-SOURCE THRESHOLD VOLTAGE
V
DS
= -10V
-8
25
125
1.1
1.05
1
0.95
0.9
0.85
0.8
0.75
-50
V
DS
= V
GS
I
D
= -250µA
I , DRAIN CURRENT (A)
-6
-4
D
-2
0
-1
-2
-3
-4
V
GS
, GATE TO SOURCE VOLTAGE (V)
-5
V
th
, NORMALIZED
-25
0
25
50
75
100
T
J
, JUNCTION TEMPERATURE (°C)
125
150
Figure 5. Transfer Characteristics.
Figure 6. Gate Threshold Variation with
Temperature.
NDT452P Rev. C3
Typical Electrical Characteristics
(continued)
1.1
10
DRAIN-SOURCE BREAKDOWN VOLTAGE
1.05
-I
S
, REVERSE DRAIN CURRENT (A)
I
D
= -250µA
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
V
GS
= 0V
BV
DSS
, NORMALIZED
T J = 125°C
1
25°C
-55°C
0.95
0.9
0.85
-50
-25
0
T
J
25
50
75
100
, JUNCTION TEMPERATURE (°C)
125
150
-0.4
-0.8
-1.2
-1.6
-2
V
SD
, BODY DIODE FORWARD VOLTAGE (V)
Figure 7. Breakdown Voltage Variation with
Temperature.
Figure 8. Body Diode Forward Voltage Variation
with Current and Temperature.
1000
10
I
D
= -3A
-V
GS
, GATE-SOURCE VOLTAGE (V)
700
V
DS
= -10V
8
C iss
CAPACITANCE (pF)
500
6
300
C oss
4
200
f = 1 MHz
V
GS
= 0 V
100
0.1
2
C rss
0.5
1
2
5
10
20
0
0.2
-V
DS
0
4
8
Q
g
, GATE CHARGE (nC)
12
16
, DRAIN TO SOURCE VOLTAGE (V)
Figure 9. Capacitance Characteristics.
Figure 10. Gate Charge Characteristics.
-V
DD
V
IN
D
t
on
t
off
t
r
90%
R
L
V
OUT
t
d(on)
t
d(off)
90%
t
f
V
GS
V
OUT
R
GEN
10%
G
DUT
10%
90%
S
V
IN
10%
50%
50%
PULSE WIDTH
INVERTED
Figure 11. Switching Test Circuit.
Figure 12. Switching Waveforms.
NDT452P Rev. C3