EEWORLDEEWORLDEEWORLD

Part Number

Search

SIT1602BI-33-18S-75.000000X

Description
-40 TO 85C, 5032, 50PPM, 1.8V, 7
CategoryPassive components   
File Size975KB,17 Pages
ManufacturerSiTime
Environmental Compliance
Download Datasheet View All

SIT1602BI-33-18S-75.000000X Overview

-40 TO 85C, 5032, 50PPM, 1.8V, 7

SiT1602B
Low Power, Standard Frequency Oscillator
Features
Applications
52 standard frequencies between 3.57 MHz and 77.76 MHz
100% pin-to-pin drop-in replacement to quartz-based XO
Excellent total frequency stability as low as ±20 ppm
Operating temperature from -40°C to 85°C. For 125°C and/or
-55°C options, refer to
SiT1618, SiT8918, SiT8920
Low power consumption of 3.5 mA typical at 1.8V
Standby mode for longer battery life
Fast startup time of 5 ms
LVCMOS/HCMOS compatible output
Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5,
5.0 x 3.2, 7.0 x 5.0 mm x mm
Instant samples with
Time Machine II
and
Field Programmable
Oscillators
Ideal for DSC, DVC, DVR, IP CAM, Tablets, e-Books,
SSD, GPON, EPON, etc
Ideal for high-speed serial protocols such as: USB,
SATA, SAS, Firewire, 100M / 1G / 10G Ethernet, etc.
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
For AEC-Q100 oscillators, refer to
SiT8924
and
SiT8925
Electrical Characteristics
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise
stated. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics
Parameters
Output Frequency Range
Symbol
f
Min.
Typ.
Max.
Unit
Condition
Refer to
Table 13
for the exact list of supported frequencies
Frequency Range
52 standard frequencies between
MHz
3.57 MHz and 77.76 MHz
-20
-25
-50
-20
-40
1.62
2.25
2.52
2.7
2.97
2.25
45
90%
Frequency Stability
F_stab
Frequency Stability and Aging
+20
ppm
Inclusive of initial tolerance at 25°C, 1st year aging at 25°C,
and variations over operating temperature, rated power
+25
ppm
supply voltage and load.
+50
ppm
Operating Temperature Range
+70
°C
Extended Commercial
+85
°C
Industrial
Supply Voltage and Current Consumption
1.8
1.98
V
Contact
SiTime
for 1.5V support
2.5
2.75
V
2.8
3.08
V
3.0
3.3
V
3.3
3.63
V
3.63
V
3.8
4.5
mA
No load condition, f = 20 MHz, Vdd = 2.8V to 3.3V
3.7
4.2
mA
No load condition, f = 20 MHz, Vdd = 2.5V
3.5
4.1
mA
No load condition, f = 20 MHz, Vdd = 1.8V
4.2
mA
Vdd = 2.5V to 3.3V, OE = GND, Output in high-Z state
4.0
mA
Vdd = 1.8 V. OE = GND, Output in high-Z state
2.6
4.3
ST = GND, Vdd = 2.8V to 3.3V, Output is weakly pulled down
̅ ̅̅
A
1.4
2.5
ST = GND, Vdd = 2.5V, Output is weakly pulled down
̅ ̅̅
A
0.6
1.3
ST = GND, Vdd = 1.8V, Output is weakly pulled down
̅ ̅̅
A
LVCMOS Output Characteristics
1
1.3
55
2
2.5
2
%
ns
ns
ns
Vdd
All Vdds. See Duty Cycle definition in
Figure 3
and
Footnote 6
Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
Vdd =1.8V, 20% - 80%
Vdd = 2.25V - 3.63V, 20% - 80%
IOH = -4 mA (Vdd = 3.0V or 3.3V)
IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOH = -2 mA (Vdd = 1.8V)
IOL = 4 mA (Vdd = 3.0V or 3.3V)
IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOL = 2 mA (Vdd = 1.8V)
Operating Temperature Range
T_use
Supply Voltage
Vdd
Current Consumption
Idd
OE Disable Current
Standby Current
I_OD
I_std
Duty Cycle
Rise/Fall Time
DC
Tr, Tf
Output High Voltage
VOH
Output Low Voltage
VOL
10%
Vdd
Rev 1.04
January 30, 2018
www.sitime.com
Playing with Zynq Serial 31——[ex53] EMIO control based on Zynq PS
1 Zynq GPIO OverviewRefer to the document "Playing with Zynq- Basics: GPIO peripherals of Zynq PS.pdf ".Regarding EMIO and MIO , I would like to say a few more words here. To put it simply, MIO is nat...
ove学习使我快乐 FPGA/CPLD
Great! Tektronix oscilloscopes have been completely upgraded, come and unlock them! If you don't read it, you will miss out on 100 million!
It's so good! Tektronix oscilloscopes have been completely upgraded, come and unlock them! If you don't check it out, you will miss out on 100 million! The event has started~3 Series MDO Mixed Domain ...
EEWORLD社区 Integrated technical exchanges
TMS320C6000 Basic Learning (3)——CCS v5 Software Development Environment Construction
=========================================================DSP CCS project file composition=======================================================1. Source files (*.c *.asm)2. Header files (*.h *.inc)3....
fish001 Microcontroller MCU
Improvement of RC series-parallel frequency-selective network oscillator in El experimental box
What can be improved in this experimental circuit? The teacher said that we can try to improve it from potentiometers, RC series-parallel networks. This is my graduation project, physics, and I don't ...
张小样张小样 Analogue and Mixed Signal
Texas Instruments helps you solve the three most common problems in high-speed amplifier design!
When designing with high-speed amplifiers, it is important to be familiar with their general specifications and understand their specific concepts. In this article, high-speed amplifiers are operation...
alan000345 Analogue and Mixed Signal
LNA [Low Noise Amplifier Practical Application Case]——[qorvo-TQL9092]
This content is originally created by btty038 , a user of EEWORLD forum . If you want to reprint or use it for commercial purposes, you must obtain the author's consent and indicate the source....
btty038 RF/Wirelessly

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号