EEWORLDEEWORLDEEWORLD

Part Number

Search

SIT8208AI-31-33E-35.840000Y

Description
-40 TO 85C, 5032, 20PPM, 3.3V, 3
CategoryPassive components   
File Size750KB,15 Pages
ManufacturerSiTime
Environmental Compliance
Download Datasheet View All

SIT8208AI-31-33E-35.840000Y Overview

-40 TO 85C, 5032, 20PPM, 3.3V, 3

SiT8208
Ultra Performance Oscillator
The Smart Timing Choice
The Smart Timing Choice
Features
Applications
Any frequency between 1 and 80 MHz accurate to 6 decimal places
100% pin-to-pin drop-in replacement to quartz-based oscillators
Ultra low phase jitter: 0.5 ps (12 kHz to 20 MHz)
Frequency stability as low as ±10 PPM
Industrial or extended commercial temperature range
LVCMOS/LVTTL compatible output
Standard 4-pin packages: 2.5 x 2.0, 3.2 x 2.5, 5.0 x 3.2,
7.0 x 5.0 mm x mm
Instant samples with
Time Machine II
and
field programmable
oscillators
Outstanding silicon reliability of 2 FIT or 500 million hour MTBF
Pb-free, RoHS and REACH compliant
Ultra short lead time
SATA, SAS, Ethernet, PCI Express, video, WiFi
Computing, storage, networking, telecom, industrial control
Electrical Characteristics
[1]
Parameter
Output Frequency Range
Frequency Stability
Symbol
f
F_stab
Min.
1
-10
-20
-25
-50
First year Aging
10-year Aging
Operating Temperature Range
T_use
F_aging
-1.5
-5
-20
-40
Supply Voltage
Vdd
1.71
2.25
2.52
2.97
Current Consumption
OE Disable Current
Idd
I_OD
Standby Current
I_std
Duty Cycle
Rise/Fall Time
Output Voltage High
Output Voltage Low
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
DC
Tr, Tf
VOH
VOL
VIH
VIL
Z_in
45
90%
70%
2
Typ.
1.8
2.5
2.8
3.3
31
29
1.2
100
Max.
80
+10
+20
+25
+50
+1.5
+5
+70
+85
1.89
2.75
3.08
3.63
33
31
31
30
70
10
55
2
10%
30%
250
Unit
MHz
PPM
PPM
PPM
PPM
PPM
PPM
°C
°C
V
V
V
V
mA
mA
mA
mA
A
A
%
ns
Vdd
Vdd
Vdd
Vdd
kΩ
MΩ
15 pF load, 10% - 90% Vdd
IOH = -6 mA, IOL = 6 mA, (Vdd = 3.3V, 2.8V, 2.5V)
IOH = -3 mA, IOL = 3 mA, (Vdd = 1.8V)
No load condition, f = 20 MHz, Vdd = 2.5V, 2.8V or 3.3V
No load condition, f = 20 MHz, Vdd = 1.8V
Vdd = 2.5V, 2.8V or 3.3V, OE = GND, output is Weakly Pulled
Down
Vdd = 1.8 V. OE = GND, output is Weakly Pulled Down
Vdd = 2.5V, 2.8V or 3.3V, ST = GND, output is Weakly Pulled
Down
Vdd = 1.8 V. ST = GND, output is Weakly Pulled Down
25°C
25°C
Extended Commercial
Industrial
Supply voltages between 2.5V and 3.3V can be supported.
Contact
SiTime
for additional information.
Inclusive of Initial tolerance at 25 °C, and variations over
operating temperature, rated power supply voltage and load
Condition
Frequency Range
Frequency Stability and Aging
Operating Temperature Range
Supply Voltage and Current Consumption
LVCMOS Output Characteristics
Input Characteristics
Pin 1, OE or ST
Pin 1, OE or ST
Pin 1, OE logic high or logic low, or ST logic high
Pin 1, ST logic low
Note:
1. All electrical specifications in the above table are specified with 15 pF output load and for all Vdd(s) unless otherwise stated.
SiTime Corporation
Rev. 1.02
990 Almanor Avenue
Sunnyvale, CA 94085
(408) 328-4400
www.sitime.com
Revised June 24, 2013
Last day: Sign up for the ST MEMS Sensor Creative Design Competition and win big prizes with DIY
The registration for the 2020 ST competition ends today at 23:59~ Attention to those who want to sign up, if you don't sign up, you can only watch.【How to register】1. Select a package you want to appl...
nmg ST MEMS Sensor Creative Design Competition
How to reduce signal coupling in RF design process
The new wave of demand for Bluetooth devices, cordless phones and cellular phones is prompting Chinese electronic engineers to pay more and more attention to RF circuit design skills. The design of RF...
fish001 RF/Wirelessly
Getting Started with Smart Home Audio Design
[align=left][color=rgb(85, 85, 85)][font="][size=14px]Author: Zachary Kingsak and Avi Yashar of Texas Instruments[/size][/font][/color][/ align][align=left][align=center][color=rgb(85, 85, 85)][font="...
alan000345 TI Technology Forum
Radio Frequency Integrated Circuits, how to learn this field well?
Radio Frequency Integrated Circuits, I know very little about this field, how can I learn it well?...
芯2020 Analog electronics
Create a flexible EDGE data receiver(Part 1)
Today''s integrated solutions don''t necessarily have to result in a high level of complexity. The introduction of new wireless standards often places tremendous pressure on the underlying technologie...
fly RF/Wirelessly
[Project source code] Altera FPGA enables the on-chip pull-up resistor function of the pin
This article and design code were written by FPGA enthusiast Xiao Meige. Without the author's permission, this article is only allowed to be copied and reproduced on online forums, and the original au...
小梅哥 Altera SoC

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号