EEWORLDEEWORLDEEWORLD

Part Number

Search

GA0805A8R2CBBBT31G

Description
CAP CER 8.2PF 100V C0G/NP0 0805
CategoryPassive components   
File Size178KB,20 Pages
ManufacturerVishay
Websitehttp://www.vishay.com
Environmental Compliance
Download Datasheet Parametric View All

GA0805A8R2CBBBT31G Overview

CAP CER 8.2PF 100V C0G/NP0 0805

GA0805A8R2CBBBT31G Parametric

Parameter NameAttribute value
capacitance8.2pF
Tolerance±0.25pF
Voltage - Rated100V
Temperature CoefficientC0G,NP0
Operating temperature-55°C ~ 150°C
characteristic-
gradeAEC-Q200
applicationAutomotive grade
failure rate-
Installation typeSurface mount, MLCC
Package/casing0805 (2012 Metric)
size/dimensions0.079" long x 0.049" wide (2.00mm x 1.25mm)
Height - Installation (maximum)-
Thickness (maximum)0.057"(1.45mm)
lead spacing-
Lead form-
GA....31G Automotive MLCC
www.vishay.com
Vishay Vitramon
Surface Mount Multilayer Ceramic Chip Capacitors
for Automotive Applications
FEATURES
• AEC-Q200 qualified with PPAP available
• Available in 0402 to 1812 body size
• 100 % matte tin termination for soldering
process
• High operating temperature
• Wet build process
• Reliable Noble Metal Electrode (NME) system
• Parts compliant with ELV directive
• Material categorization: for definitions of compliance
please see
www.vishay.com/doc?99912
For more than 25 years Vishay Vitramon has supported the automotive industry with robust, highly reliable MLCCs that have
made it a leader in this segment. All Vishay Vitramon MLCCs are manufactured in “Precious Metal Technology” (PMT / NME)
and a wet build process. They are qualified according to AEC-Q200 with PPAP available on request. Applications for these
devices include automotive “under the hood”, safety and comfort electronics. Their termination finish is 100 % matte tin plate
finish. A polymer (flexible) termination with 100 % matte tin plate finish is offered for boardflex sensitive applications.
C0G (NP0) DIELECTRIC
GENERAL SPECIFICATION
Note
Electrical characteristics at +25 °C unless otherwise specified
X7R, X8R DIELECTRIC
GENERAL SPECIFICATION
Note
Electrical characteristics at +25 °C unless otherwise specified
Operating Temperature:
-55 °C to +150 °C
(above +125 °C changed characteristics, see 2.2)
Capacitance Range:
1 pF to 22 nF
Voltage Range:
25 V
DC
to 3000 V
DC
Temperature Coefficient of Capacitance (TCC):
0 ppm/°C ± 30 ppm/°C from -55 °C to +125 °C
Dissipation Factor (DF):
0.1 % maximum at 1.0 V
RMS
and
1 MHz for values
1000 pF
0.1 % maximum at 1.0 V
RMS
and
1 kHz for values > 1000 pF
Insulating Resistance:
at +25 °C 100 000 M min. or 1000
F
whichever is less
at +125 °C 10 000 M min. or 100
F
whichever is less
Aging:
0 % maximum per decade
Dielectric Strength Test:
performed per method 103 of EIA 198-2-E.
Applied test voltages
250 V
DC
-rated:
250 % of rated voltage
500 V
DC
-rated:
200 % of rated voltage
630 V
DC
, 1000 V
DC
-rated:
150 % of rated voltage
3000 V
DC
-rated:
120 % of rated voltage
Operating Temperature:
-55 °C to +150 °C
(X7R above +125 °C changed characteristics, see 2.2)
Capacitance Range:
120 pF to 1.0 μF
Voltage Range:
16 V
DC
to 630 V
DC
Temperature Coefficient of Capacitance (TCC):
X7R: ± 15 % from -55 °C to +125 °C, with 0 V
DC
applied
X8R: ± 15 % from -55 °C to +150 °C, with 0 V
DC
applied
Dissipation Factor (DF):
16 V, 25 V ratings: 3.5 % maximum at 1.0 V
RMS
and 1 kHz
> 25 V ratings: 2.5 % maximum at 1.0 V
RMS
and 1 kHz
Insulating Resistance:
at +25 °C 100 000 M min. or 1000
F
whichever is less
at +125 °C 10 000 M min. or 100
F
whichever is less
Aging Rate:
1 % maximum per decade
Dielectric Strength Test:
performed per method 103 of EIA 198-2-E.
Applied test voltages
250 V
DC
-rated:
250 % of rated voltage
500 V
DC
-rated:
min. 150 % of rated voltage
630 V
DC
:
min. 120 % of rated voltage
Revision: 29-May-2018
Document Number: 45230
1
For technical questions, contact:
mlcc@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT
www.vishay.com/doc?91000
MOSFET turn-on schedule question
As shown in the figure, Pspice simulates the mosfet turn-on process. The waveform obtained by simulation is shown in the figure (blue is Vds, red is Vgs, and green is Id), which is different from the ...
ujs Analog electronics
The gift redemption speed is really fast
I have a business trip on the 12th and I am a little confused whether to exchange it before or after the trip. I am afraid that the express delivery will be lost if it is piled up too much. I saw the ...
cardin6 Talking
VMM Image Measurement Software
Could you please tell me which cameras VMM image measurement software can support? Does it support driverless cameras?...
UUC Industrial Control Electronics
msp430F149 PWM adjustment
[i=s]This post was last edited by Hot Ximixiu on 2019-6-9 21:55[/i]I said I would just calm down and adjust my PID, but someone told me to adjust a PWM wave with a duty cycle of 10%.No, let’s just go ...
火辣西米秀 Microcontroller MCU
Album information compilation: Power supply simulation, those who need it, please enter!
In order to achieve the best performance of the power supply system, simulation analysis is usually performed after the power supply design is determined to verify the accuracy and feasibility of the ...
okhxyyo Power technology
Detection circuit
I want a good AD637 detection circuit. Thank you....
阡陌的小号 Analog electronics

Technical ResourceMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号