EEWORLDEEWORLDEEWORLD

Part Number

Search

SIT1602BC-23-28N-38.000000D

Description
-20 TO 70C, 3225, 50PPM, 2.8V, 3
CategoryPassive components   
File Size975KB,17 Pages
ManufacturerSiTime
Environmental Compliance
Download Datasheet View All

SIT1602BC-23-28N-38.000000D Overview

-20 TO 70C, 3225, 50PPM, 2.8V, 3

SiT1602B
Low Power, Standard Frequency Oscillator
Features
Applications
52 standard frequencies between 3.57 MHz and 77.76 MHz
100% pin-to-pin drop-in replacement to quartz-based XO
Excellent total frequency stability as low as ±20 ppm
Operating temperature from -40°C to 85°C. For 125°C and/or
-55°C options, refer to
SiT1618, SiT8918, SiT8920
Low power consumption of 3.5 mA typical at 1.8V
Standby mode for longer battery life
Fast startup time of 5 ms
LVCMOS/HCMOS compatible output
Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5,
5.0 x 3.2, 7.0 x 5.0 mm x mm
Instant samples with
Time Machine II
and
Field Programmable
Oscillators
Ideal for DSC, DVC, DVR, IP CAM, Tablets, e-Books,
SSD, GPON, EPON, etc
Ideal for high-speed serial protocols such as: USB,
SATA, SAS, Firewire, 100M / 1G / 10G Ethernet, etc.
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
For AEC-Q100 oscillators, refer to
SiT8924
and
SiT8925
Electrical Characteristics
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise
stated. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics
Parameters
Output Frequency Range
Symbol
f
Min.
Typ.
Max.
Unit
Condition
Refer to
Table 13
for the exact list of supported frequencies
Frequency Range
52 standard frequencies between
MHz
3.57 MHz and 77.76 MHz
-20
-25
-50
-20
-40
1.62
2.25
2.52
2.7
2.97
2.25
45
90%
Frequency Stability
F_stab
Frequency Stability and Aging
+20
ppm
Inclusive of initial tolerance at 25°C, 1st year aging at 25°C,
and variations over operating temperature, rated power
+25
ppm
supply voltage and load.
+50
ppm
Operating Temperature Range
+70
°C
Extended Commercial
+85
°C
Industrial
Supply Voltage and Current Consumption
1.8
1.98
V
Contact
SiTime
for 1.5V support
2.5
2.75
V
2.8
3.08
V
3.0
3.3
V
3.3
3.63
V
3.63
V
3.8
4.5
mA
No load condition, f = 20 MHz, Vdd = 2.8V to 3.3V
3.7
4.2
mA
No load condition, f = 20 MHz, Vdd = 2.5V
3.5
4.1
mA
No load condition, f = 20 MHz, Vdd = 1.8V
4.2
mA
Vdd = 2.5V to 3.3V, OE = GND, Output in high-Z state
4.0
mA
Vdd = 1.8 V. OE = GND, Output in high-Z state
2.6
4.3
ST = GND, Vdd = 2.8V to 3.3V, Output is weakly pulled down
̅ ̅̅
A
1.4
2.5
ST = GND, Vdd = 2.5V, Output is weakly pulled down
̅ ̅̅
A
0.6
1.3
ST = GND, Vdd = 1.8V, Output is weakly pulled down
̅ ̅̅
A
LVCMOS Output Characteristics
1
1.3
55
2
2.5
2
%
ns
ns
ns
Vdd
All Vdds. See Duty Cycle definition in
Figure 3
and
Footnote 6
Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
Vdd =1.8V, 20% - 80%
Vdd = 2.25V - 3.63V, 20% - 80%
IOH = -4 mA (Vdd = 3.0V or 3.3V)
IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOH = -2 mA (Vdd = 1.8V)
IOL = 4 mA (Vdd = 3.0V or 3.3V)
IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOL = 2 mA (Vdd = 1.8V)
Operating Temperature Range
T_use
Supply Voltage
Vdd
Current Consumption
Idd
OE Disable Current
Standby Current
I_OD
I_std
Duty Cycle
Rise/Fall Time
DC
Tr, Tf
Output High Voltage
VOH
Output Low Voltage
VOL
10%
Vdd
Rev 1.04
January 30, 2018
www.sitime.com
EEWORLD University ---- Matlab Machine Learning
Matlab machine learning : https://training.eeworld.com.cn/course/5046In this video, you'll follow Loren Shure as he quickly gets started with machine learning algorithms and learn about the three type...
老白菜 DIY/Open Source Hardware
How embedded hardware and software systems work
As one of the greatest inventions of human society in the 20th century, computers have gradually entered the post-PC era recently. The advent of the post-PC era also marks the birth of embedded produc...
Jacktang DSP and ARM Processors
Help: How to reduce the power consumption of the solenoid valve coil
[i=s]This post was last edited by chenzhouyu on 2019-3-20 14:58[/i] Hi everyone, I want to reduce the power consumption of the coil after the solenoid valve is turned on, so I built a circuit myself. ...
chenzhouyu Integrated technical exchanges
How to write arm-poky mixed Makefile
The cross-compilation tool uses ARM-poky-linux-gnueabi-g++ and arm-poky-linux-gnueabi-gcc for mixed compilation1. Create new main.c Makefile myinclude.h test.cppvim main.c//filename main.c#include std...
明远智睿Lan Linux and Android
Inductor and capacitor selection for flyback circuit
Dear experts, how to choose the inductor and capacitor of the general flyback circuit?...
洗洗睡 Power technology

Technical ResourceMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号