52 standard frequencies between 3.57 MHz and 77.76 MHz
100% pin-to-pin drop-in replacement to quartz-based XO
Excellent total frequency stability as low as ±20 ppm
Operating temperature from -40°C to 85°C. For 125°C and/or
-55°C options, refer to
SiT1618, SiT8918, SiT8920
Low power consumption of 3.5 mA typical at 1.8V
Standby mode for longer battery life
Fast startup time of 5 ms
LVCMOS/HCMOS compatible output
Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5,
5.0 x 3.2, 7.0 x 5.0 mm x mm
Instant samples with
Time Machine II
and
Field Programmable
Oscillators
Ideal for DSC, DVC, DVR, IP CAM, Tablets, e-Books,
SSD, GPON, EPON, etc
Ideal for high-speed serial protocols such as: USB,
SATA, SAS, Firewire, 100M / 1G / 10G Ethernet, etc.
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
For AEC-Q100 oscillators, refer to
SiT8924
and
SiT8925
Electrical Characteristics
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise
stated. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics
Parameters
Output Frequency Range
Symbol
f
Min.
Typ.
Max.
Unit
Condition
Refer to
Table 13
for the exact list of supported frequencies
Frequency Range
52 standard frequencies between
MHz
3.57 MHz and 77.76 MHz
-20
-25
-50
-20
-40
1.62
2.25
2.52
2.7
2.97
2.25
–
–
–
–
–
–
–
–
45
–
–
–
90%
Frequency Stability
F_stab
Frequency Stability and Aging
–
+20
ppm
Inclusive of initial tolerance at 25°C, 1st year aging at 25°C,
and variations over operating temperature, rated power
–
+25
ppm
supply voltage and load.
–
+50
ppm
Operating Temperature Range
–
+70
°C
Extended Commercial
–
+85
°C
Industrial
Supply Voltage and Current Consumption
1.8
1.98
V
Contact
SiTime
for 1.5V support
2.5
2.75
V
2.8
3.08
V
3.0
3.3
V
3.3
3.63
V
–
3.63
V
3.8
4.5
mA
No load condition, f = 20 MHz, Vdd = 2.8V to 3.3V
3.7
4.2
mA
No load condition, f = 20 MHz, Vdd = 2.5V
3.5
4.1
mA
No load condition, f = 20 MHz, Vdd = 1.8V
–
4.2
mA
Vdd = 2.5V to 3.3V, OE = GND, Output in high-Z state
–
4.0
mA
Vdd = 1.8 V. OE = GND, Output in high-Z state
2.6
4.3
ST = GND, Vdd = 2.8V to 3.3V, Output is weakly pulled down
̅ ̅̅
A
1.4
2.5
ST = GND, Vdd = 2.5V, Output is weakly pulled down
̅ ̅̅
A
0.6
1.3
ST = GND, Vdd = 1.8V, Output is weakly pulled down
̅ ̅̅
A
LVCMOS Output Characteristics
–
1
1.3
–
–
55
2
2.5
2
–
%
ns
ns
ns
Vdd
All Vdds. See Duty Cycle definition in
Figure 3
and
Footnote 6
Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
Vdd =1.8V, 20% - 80%
Vdd = 2.25V - 3.63V, 20% - 80%
IOH = -4 mA (Vdd = 3.0V or 3.3V)
IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOH = -2 mA (Vdd = 1.8V)
IOL = 4 mA (Vdd = 3.0V or 3.3V)
IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOL = 2 mA (Vdd = 1.8V)
Operating Temperature Range
T_use
Supply Voltage
Vdd
Current Consumption
Idd
OE Disable Current
Standby Current
I_OD
I_std
Duty Cycle
Rise/Fall Time
DC
Tr, Tf
Output High Voltage
VOH
Output Low Voltage
VOL
–
–
10%
Vdd
Rev 1.04
January 30, 2018
www.sitime.com
SiT1602B
Low Power, Standard Frequency Oscillator
Table 1. Electrical Characteristics (continued)
Parameters
Symbol
Min.
Typ.
–
–
87
–
–
–
–
1.8
1.8
12
14
0.5
1.3
Max.
–
30%
150
–
Unit
Pin 1, OE or ST
̅ ̅̅
Pin 1, OE or ST
̅ ̅̅
Pin 1, OE logic high or logic low, or ST logic high
̅ ̅̅
Pin 1, ST logic low
̅ ̅̅
Condition
Input Characteristics
Input High Voltage
Input Low Voltage
Input Pull-up Impedance
VIH
VIL
Z_in
70%
–
50
2
Startup Time
Enable/Disable Time
Resume Time
RMS Period Jitter
Peak-to-peak Period Jitter
RMS Phase Jitter (random)
–
–
–
–
–
T_pk
T_phj
–
–
–
–
Vdd
Vdd
k
M
ms
ns
ms
ps
ps
ps
ps
ps
ps
Startup and Resume Timing
T_start
T_oe
T_resume
T_jitt
5
138
5
Jitter
3
3
25
30
0.9
2
f = 75 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
f = 75 MHz, Vdd = 1.8V
f = 75 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
f = 75 MHz, Vdd = 1.8V
f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz
f = 75 MHz, Integration bandwidth = 12 kHz to 20 MHz
Measured from the time Vdd reaches its rated minimum value
f = 77.76 MHz. For other frequencies, T_oe = 100 ns + 3 *
cycles
Measured from the time ST pin crosses 50% threshold
̅ ̅̅
Table 2. Pin Description
Pin
Symbol
[1]
Functionality
Output Enable
H : specified frequency output
L: output is high impedance. Only output driver is disabled.
H : specified frequency output
L: output is low (weak pull down). Device goes to sleep mode. Supply
current reduces to I_std.
Any voltage between 0 and Vdd or Open : Specified frequency
output. Pin 1 has no function.
Electrical ground
Oscillator output
Power supply voltage
[2]
[1]
[1]
Top View
OE/ST/NC
VDD
1
OE/ST /NC
̅ ̅̅
Standby
No Connect
2
3
4
GND
OUT
VDD
Power
Output
Power
GND
OUT
Figure 1. Pin Assignments
Notes:
1. In OE or ST mode, a pull-up resistor of 10 kΩ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.
̅ ̅̅
2. A capacitor of value 0.1 µF or higher between Vdd and GND is required.
Rev 1.04
Page 2 of 17
www.sitime.com
SiT1602B
Low Power, Standard Frequency Oscillator
Table 3. Absolute Maximum Limits
Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance
of the IC is only guaranteed within the operational specifications, not at absolute maximum rat ings.
Parameter
Storage Temperature
Vdd
Electrostatic Discharge
Soldering Temperature (follow standard Pb free
soldering guidelines)
Junction Temperature
[3]
Min.
-65
-0.5
–
–
–
Max.
150
4
2000
260
150
Unit
°C
V
V
°C
°C
Note:
3. Exceeding this temperature for extended period of time may damage the device.
Table 4. Thermal Consideration
[4]
Package
7050
5032
3225
2520
2016
Note:
4. Refer to JESD51 for
JA
and
JC
definitions, and reference layout used to determine the
JA
and
JC
values in the above table.
JA, 4 Layer Board
(°C/W)
142
97
109
117
152
JA, 2 Layer Board
(°C/W)
273
199
212
222
252
JC, Bottom
(°C/W)
30
24
27
26
36
Table 5. Maximum Operating Junction Temperature
[5]
Max Operating Temperature (ambient)
70°C
85°C
Maximum Operating Junction Temperature
80°C
95°C
Note:
5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.
Table 6. Environmental Compliance
Parameter
Mechanical Shock
Mechanical Vibration
Temperature Cycle
Solderability
Moisture Sensitivity Level
Condition/Test Method
MIL-STD-883F, Method 2002
MIL-STD-883F, Method 2007
JESD22, Method A104
MIL-STD-883F, Method 2003
MSL1 @ 260°C
Rev 1.04
Page 3 of 17
www.sitime.com
SiT1602B
Low Power, Standard Frequency Oscillator
Test Circuit and Waveform
[6]
Vdd
Vout
Test Point
tr
80% Vdd
tf
4
Power
Supply
0.1 uF
1
3
2
15pF
(including probe
and fixture
capacitance)
50%
20% Vdd
High Pulse
(TH)
Period
Low Pulse
(TL)
Vdd
OE/ST Function
1 kΩ
Figure 2. Test Circuit
Note:
6. Duty Cycle is computed as Duty Cycle = TH/Period.
Figure 3. Waveform
Timing Diagrams
90% Vdd
Vdd
Vdd
50% Vdd
[7]
Pin 4 Voltage
T_start
No Glitch
during start up
ST Voltage
T_resume
CLK Output
HZ
T_start: Time to start from power-off
CLK Output
HZ
T_resume: Time to resume from ST
Figure 4. Startup Timing (OE/ ST̅ Mode)
̅ ̅
Figure 5. Standby Resume Timing ( ST̅ Mode Only)
̅ ̅
Vdd
50% Vdd
OE Voltage
T_oe
Vdd
OE Voltage
50% Vdd
T_oe
CLK Output
HZ
T_oe: Time to re-enable the clock output
CLK Output
HZ
T_oe: Time to put the output in High Z mode
Figure 6. OE Enable Timing (OE Mode Only)
Figure 7. OE Disable Timing (OE Mode Only)
Note:
7. SiT1602 has “no runt” pulses and “no glitch” output during startup or resume.
OverviewIn 2016 , the IEC62752-2016 standard was officially released. The standard specifies the functions and effects of IC-CPD . Among them, Type B residual current detection has become an important...
The rt description only mentions the on and off commands. Is this thing for self-heating and automatic error reset? Or does it have other special uses?...
[size=4] Migrate your existing MSP430 MCU design to TI's new high-performance MSP432 MCU platform. Or, when you need to reduce the power consumption of your product, you may consider migrating your ex...
6ULL 256M is memory, 256M is nand) Introduction: Use a card reader to make a bootable TF card, directly insert it into the development board, and it can be directly started. 1. Find a TF (32g or less,...
[i=s]This post was last edited by Li Baiyi on 2019-12-8 20:47[/i]Smart Home
Project Introduction: 10.1-inch touch screen and mobile terminal synchronously control home appliances
System Block Diagram:...
San Diego-based technology giant Qualcomm Inc last month once again lowered its smartphone shipment forecasts and made a pessimistic assessment of the coming quarters, the Wall Street Journal reporte...[Details]
At present, Japan has officially implemented material sanctions against South Korea. The export of three materials, namely fluoropolyimide, photoresist and high-purity hydrogen fluoride, to South Kor...[Details]
Recently, Xiling Vision announced that it has completed its first round of financing of tens of millions of yuan, led by Yizhuang State Investment and followed by CITIC Construction Investment. This ...[Details]
On July 13, TCL Group released its 2019 semi-annual performance forecast, and it is expected that performance will increase in the same direction during the reporting period. The announcement discl...[Details]
Recently, I designed a product using the CY7C68013A chip. In fact, there is a 51 MCU inside to control USB communication. During the test process, I found that after some circuit boards were powered ...[Details]
Aiming at the problem of multi-channel resistance measurement difficulty often encountered in actual measurement work, a new multi-channel resistance measurement system is designed. The system uses t...[Details]
On the afternoon of September 25, Jiashan County, Jiaxing City, Zhejiang Province held a signing ceremony for the Huajin Semiconductor Project, which will build an advanced packaging production line ...[Details]
Overview Different ECUs in the vehicle can communicate with each other. Each module has different data formats and communication rates. If there is no coordinated gateway, communication confusion m...[Details]
1 Introduction
Recently, people are considering using solar energy for a wider range of consumer electronics applications, including mobile phone chargers. The power provided by solar panels ...[Details]
When I was reading the assembly code of ARM before, I came across the adr instruction. I checked the instruction manual of ARM, and it only said that the instruction uses a relative address, but there...[Details]
Since 2011, LED enterprises have been hit hard by the European debt crisis. In addition, LED enterprises are restricted by a series of problems such as overcapacity, technical bottlenecks, low R&D ...[Details]
BootLoader refers to a small program that runs after the system starts and before the operating system kernel runs. Through BootLoader, we can initialize hardware devices and establish a mapping of me...[Details]
The relationship between the AVR microcontroller register DDRx PORTx PINx and the corresponding IO port (x represents a port, such as port A, port B, etc.)
The following table uses the second bit PB2...[Details]
1. Sleep Sleep mode is one of the most common ways to reduce power consumption, but the microcontroller cannot do anything during sleep. For those who fall asleep when there is nothing to do and do...[Details]
Note: The mouse driver described in this article can only realize the button-like functions of the left and right mouse buttons and the scroll wheel. Pressing the left button will type "l", the rig...[Details]