EEWORLDEEWORLDEEWORLD

Part Number

Search

SIT9120AC-2D1-XXE212.500000X

Description
-20 TO 70C, 7050, 20PPM, 2.25V-3
CategoryPassive components   
File Size480KB,13 Pages
ManufacturerSiTime
Environmental Compliance
Download Datasheet Parametric View All

SIT9120AC-2D1-XXE212.500000X Overview

-20 TO 70C, 7050, 20PPM, 2.25V-3

SIT9120AC-2D1-XXE212.500000X Parametric

Parameter NameAttribute value
Installation typesurface mount
Package/casing6-SMD, no leads
size/dimensions0.276" long x 0.197" wide (7.00mm x 5.00mm)
Height - Installation (maximum)0.039"(1.00mm)
SiT9120
Standard Frequency Differential Oscillator
The Smart Timing Choice
The Smart Timing Choice
Features
Applications
31 standard frequencies from 25 MHz to 212.5 MHz
LVPECL and LVDS output signaling types
0.6 ps RMS phase jitter (random) over 12 kHz to 20 MHz bandwidth
Frequency stability as low as ±10 ppm
Industrial and extended commercial temperature ranges
Industry-standard packages: 3.2x2.5, 5.0x3.2 and 7.0x5.0 mmxmm
For any other frequencies between 1 to 625 MHz, refer to SiT9121
and SiT9122 datasheet
10GB Ethernet, SONET, SATA, SAS, Fibre Channel,
PCI-Express
Telecom, networking, instrumentation, storage, servers
Electrical Characteristics
Parameter and Conditions
Supply Voltage
Symbol
Vdd
Min.
2.97
2.25
2.25
Output Frequency Range
Frequency Stability
f
F_stab
25
-10
-20
-25
-50
First Year Aging
10-year Aging
Operating Temperature Range
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
Start-up Time
Resume Time
Duty Cycle
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Standby Current
Maximum Output Current
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
OE Enable/Disable Time
RMS Period Jitter
F_aging1
F_aging10
T_use
VIH
VIL
Z_in
T_start
T_resume
DC
Idd
I_OE
I_leak
I_std
I_driver
VOH
VOL
V_Swing
Tr, Tf
T_oe
T_jitt
-2
-5
-40
-20
70%
2
45
Vdd-1.1
Vdd-1.9
1.2
Typ.
3.3
2.5
100
6
6
61
1.6
300
1.2
1.2
1.2
0.6
Max.
3.63
2.75
3.63
212.5
+10
+20
+25
+50
+2
+5
+85
+70
30%
250
10
10
55
69
35
1
100
30
Vdd-0.7
Vdd-1.5
2.0
500
115
1.7
1.7
1.7
0.85
Unit
V
V
V
MHz
ppm
ppm
ppm
ppm
ppm
ppm
°C
°C
Vdd
Vdd
ms
ms
%
mA
mA
A
A
mA
V
V
V
ps
ns
ps
ps
ps
ps
25°C
25°C
Industrial
Extended Commercial
Pin 1, OE or ST
Pin 1, OE or ST
Pin 1, OE logic high or logic low, or ST logic high
Pin 1, ST logic low
Measured from the time Vdd reaches its rated minimum value.
In Standby mode, measured from the time ST pin crosses
50% threshold.
Contact SiTime for tighter duty cycle
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
ST = Low, for all Vdds
Maximum average current drawn from OUT+ or OUT-
See Figure 1(a)
See Figure 1(a)
See Figure 1(b)
20% to 80%, see Figure 1(a)
f = 212.5 MHz - For other frequencies, T_oe = 100ns + 3 period
f = 100 MHz, VDD = 3.3V or 2.5V
f = 156.25 MHz, VDD = 3.3V or 2.5V
f = 212.5 MHz, VDD = 3.3V or 2.5V
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all
Vdds
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
See Figure 2
Termination schemes in Figures 1 and 2 - XX ordering code
See last page for list of standard frequencies
Inclusive of initial tolerance, operating temperature, rated power
supply voltage, and load variations
Condition
LVPECL and LVDS, Common Electrical Characteristics
LVPECL, DC and AC Characteristics
RMS Phase Jitter (random)
T_phj
LVDS, DC and AC Characteristics
Current Consumption
OE Disable Supply Current
Differential Output Voltage
Idd
I_OE
VOD
250
47
350
55
35
450
mA
mA
mV
SiTime Corporation
Rev. 1.06
990 Almanor Avenue, Sunnyvale, CA 94085
(408) 328-4400
www.sitime.com
Revised October 3, 2014
EEWORLD University ---- FPGA design and FPGA application based on Verilog HDL (Intel official tutorial)
FPGA design and FPGA application based on Verilog HDL (Intel official tutorial) : https://training.eeworld.com.cn/course/5564The basics and design methods of Verilog hardware description language were...
Lemontree FPGA/CPLD
Showing off the goods + the first wave of development boards
Computer Circle USB Development BoardCPLD Development BoardSabretooth STM8 Development BoardWater Sensor...
chenbingjy Special Edition for Assessment Centres
RF Circuit Engineering Design
"RF Circuit Engineering Design" analyzes in detail the design process of various independent RF modules such as LNA, mixer, differential pair, balun, tuned filter, VCO and power amplifier. From the pe...
arui1999 Download Centre
What is the role of the pull-up resistor? How to choose the value of the pull-up resistor
The so-called pull-up resistor is to connect the GPIO port of the microcontroller to the power supply through a resistor, and give the GPIO pin a certain high level in the initial state to prevent mal...
Aguilera Analogue and Mixed Signal
How to obtain additional information of Pingtouge scenario-based Bluetooth MESH
I encountered a problem with Bluetooth debugging a few days ago. Today I received a technical call from the manufacturer for help. The technicians were very enthusiastic and professional. In addition ...
littleshrimp Domestic Chip Exchange
I have encountered a problem with the iTOP4418 development board. Is there any big guy who can help me?
[color=#4f4f4f][font="]Has anyone encountered this problem? I changed it according to the instructions on the Internet and compiled it, but it's still the same...[/font][/color]...
马佳徐徐 Embedded System

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号