3D7105
MONOLITHIC 5-TAP
FIXED DELAY LINE
(SERIES 3D7105)
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
data
3
®
delay
devices,
inc.
PACKAGES
IN
N/C
N/C
O2
N/C
O4
GND
1
2
3
4
5
6
7
14
13
12
11
10
9
8
VDD
N/C
O1
N/C
O3
N/C
O5
IN
1 8
VDD
All-silicon, low-power CMOS
VDD
IN
1
8
O2
2 7
O1
technology
O4
3 6
O3
O1
O2
2
7
GND
4 5
O5
TTL/CMOS compatible
O3
O4
3
6
inputs and outputs
3D7105Z
O5
GND
4
5
SOIC
Vapor phase, IR and wave
(150 Mil)
solderable
3D7105M DIP
Auto-insertable (DIP pkg.)
3D7105H Gull-Wing
(300 Mil)
Low ground bounce noise
Leading- and trailing-edge accuracy
IN
1
16
VDD
Delay range:
.75 through 80ns
N/C
2
15
N/C
Delay tolerance:
5% or 1ns
N/C
3
14
N/C
O2
4
13
O1
Temperature stability:
±3%
typical (0C-70C)
N/C
5
12
N/C
O4
6
11
O3
Vdd stability:
±1%
typical (4.75V-5.25V)
N/C
7
10
N/C
GND
8
9
O5
Minimum input pulse width:
30% of total delay
14-pin DIP and 16-pin SOIC available as drop-in
3D7105S SOIC
replacements for hybrid delay lines
(300 Mil)
3D7105 DIP
3D7105G Gull-Wing
3D7105K Unused pins
removed
(300 Mil)
FUNCTIONAL DESCRIPTION
The 3D7105 5-Tap Delay Line product family consists of fixed-delay
CMOS integrated circuits. Each package contains a single delay line,
tapped and buffered at 5 points spaced uniformly in time. Tap-to-tap
(incremental) delay values can range from 0.75ns through 8.0ns. The
input is reproduced at the outputs without inversion, shifted in time as per
the user-specified dash number. The 3D7105 is TTL- and CMOS-
compatible, capable of driving ten 74LS-type loads, and features both
rising- and falling-edge accuracy.
PIN DESCRIPTIONS
IN
O1
O2
O3
O4
O5
VCC
GND
N/C
Delay Line Input
Tap 1 Output (20%)
Tap 2 Output (40%)
Tap 3 Output (60%)
Tap 4 Output (80%)
Tap 5 Output (100%)
+5 Volts
Ground
No Connection
The all-CMOS 3D7105 integrated circuit has been designed as a reliable,
economic alternative to hybrid TTL fixed delay lines. It is offered in a standard 8-pin auto-insertable DIP
and a space saving surface mount 8-pin SOIC.
TABLE 1: PART NUMBER SPECIFICATIONS
PART NUMBER
DIP-8
3D7105M
3D7105H
SOIC-8
3D7105Z
DIP-14
3D7105
3D7105G
3D7105K
SOIC-16
3D7105S
TOLERANCES
TOTAL
DELAY (ns)
TAP-TAP
DELAY
(ns)
Max
Operating
Frequency
INPUT RESTRICTIONS
Absolute
Max
Oper. Freq.
Min
Operating
Pulse Width
Absolute
Min
Oper. P.W.
-.75
-.75
-.75
-.75
41.7 MHz
3.0
±
1.0*
0.75
±
0.4
-1
-1
-1
-1
37.0 MHz
4.0
±
1.0*
1.0
±
0.5
-1.5
-1.5
-1.5
-1.5
30.3 MHz
6.0
±
1.0*
1.5
±
0.7
-2
-2
-2
-2
25.6 MHz
8.0
±
1.0*
2.0
±
0.8
-2.5
-2.5
-2.5
-2.5
22.2 MHz
10.0
±
1.0*
2.5
±
1.0
-4
-4
-4
-4
15.9 MHz
16.0
±
1.0*
4.0
±
1.3
-5
-5
-5
-5
13.3 MHz
25.0
±
1.3
5.0
±
1.5
-8
-8
-8
-8
9.52 MHz
40.0
±
2.0
8.0
±
1.5
* Total delay referenced to Tap1 output; Input-to-Tap1 = 5.0ns
±
1.0ns
NOTE: Any dash number between .75 and 8 not shown is also available.
166.7 MHz
166.7 MHz
166.7 MHz
166.7 MHz
133.3 MHz
83.3 MHz
66.7 MHz
41.7 MHz
12.0 ns
13.5 ns
16.5 ns
19.5 ns
22.5 ns
31.5 ns
37.5 ns
52.5 ns
3.00 ns
3.00 ns
3.00 ns
3.00 ns
3.75 ns
6.00 ns
7.50 ns
12.0 ns
©
1996 Data Delay Devices
Doc #96006
12/2/96
DATA DELAY DEVICES, INC.
3 Mt. Prospect Ave. Clifton, NJ 07013
1
3D7105
APPLICATION NOTES
OPERATIONAL DESCRIPTION
The 3D7105 five-tap delay line architecture is
shown in Figure 1. The delay line is composed
of a number of delay cells connected in series.
Each delay cell produces at its output a replica of
the signal present at its input, shifted in time.
The delay cells are matched and share the same
compensation signals, which minimizes tap-to-
tap delay deviations over temperature and
supply voltage variations.
To guarantee the
Table 1
delay accuracy for
input frequencies higher than the
Maximum
Operating Frequency,
the 3D7105 must be
tested at the user operating frequency.
Therefore, to facilitate production and device
identification,
the part number will include a
custom reference designator
identifying the
intended frequency of operation. The
programmed delay accuracy of the device is
guaranteed, therefore, only at the user specified
input frequency. Small input frequency variation
about the selected frequency will only marginally
impact the programmed delay accuracy, if at all.
Nevertheless, it is strongly recommended
that the engineering staff at DATA DELAY
DEVICES be consulted.
INPUT SIGNAL CHARACTERISTICS
The Frequency and/or Pulse Width (high or low)
of operation may adversely impact the specified
delay accuracy of the particular device. The
reasons for the dependency of the output delay
accuracy on the input signal characteristics are
varied and complex. Therefore a
Maximum
and
an
Absolute Maximum
operating input
frequency and a
Minimum
and an
Absolute
Minimum
operating pulse width have been
specified.
OPERATING PULSE WIDTH
The
Absolute Minimum Operating Pulse
Width
(high or low) specification, tabulated in
Table 1,
determines the smallest Pulse Width of
the delay line input signal that can be
reproduced, shifted in time at the device output,
with acceptable pulse width distortion.
The
Minimum Operating Pulse Width
(high or
low) specification determines the smallest Pulse
Width of the delay line input signal for which the
output delay accuracy tabulated in
Table 1
is
guaranteed.
To guarantee the
Table 1
delay accuracy for
input pulse width smaller than the
Minimum
Operating Pulse Width,
the 3D7105 must be
tested at the user operating pulse width.
Therefore, to facilitate production and device
identification, the
part number will include a
IN
O1
O2
O3
O4
O5
OPERATING FREQUENCY
The
Absolute Maximum Operating Frequency
specification, tabulated in
Table 1,
determines
the highest frequency of the delay line input
signal that can be reproduced, shifted in time at
the device output, with acceptable duty cycle
distortion.
The
Maximum Operating Frequency
specification determines the highest frequency of
the delay line input signal for which the output
delay accuracy is guaranteed.
IN O1
O2
O3
O4
O5
25%
25%
25%
25%
20%
20%
20%
20%
20%
Temp & VDD
Compensation
Temp & VDD
Compensation
Dash numbers < 5
VDD
GND
VDD
Dash numbers >= 5
GND
Figure 1: 3D7105 Functional Diagram
Doc #96006
12/2/96
DATA DELAY DEVICES, INC.
Tel: 973-773-2299
Fax: 973-773-9672
http://www.datadelay.com
2
3D7105
APPLICATION NOTES (CONT’D)
custom reference designator
identifying the
intended frequency and duty cycle of operation.
The programmed delay accuracy of the device is
guaranteed, therefore, only for the user specified
input characteristics. Small input pulse width
variation about the selected pulse width will only
marginally impact the programmed delay
accuracy, if at all.
Nevertheless, it is strongly
recommended that the engineering staff at
DATA DELAY DEVICES be consulted.
circuitry to minimize the delay variations induced
by fluctuations in power supply and/or
temperature.
The
thermal coefficient
is reduced to
600
PPM/C,
which is equivalent to a variation , over
the 0C-70C operating range, of
±
3%
from the
room-temperature delay settings and/or
1.0ns,
whichever is greater. The
power supply
coefficient
is reduced, over the 4.75V-5.25V
operating range, to
±
1%
of the delay settings at
the nominal 5.0VDC power supply and/or
1.5ns,
whichever is greater.
It is essential that the
power supply pin be adequately bypassed
and filtered. In addition, the power bus
should be of as low an impedance
construction as possible. Power planes are
preferred.
POWER SUPPLY AND
TEMPERATURE CONSIDERATIONS
The delay of CMOS integrated circuits is strongly
dependent on power supply and temperature.
The monolithic 3D7105 programmable delay line
utilizes novel and innovative compensation
DEVICE SPECIFICATIONS
TABLE 2: ABSOLUTE MAXIMUM RATINGS
PARAMETER
DC Supply Voltage
Input Pin Voltage
Input Pin Current
Storage Temperature
Lead Temperature
SYMBOL
V
DD
V
IN
I
IN
T
STRG
T
LEAD
MIN
-0.3
-0.3
-1.0
-55
MAX
7.0
V
DD
+0.3
1.0
150
300
UNITS
V
V
mA
C
C
NOTES
25C
10 sec
TABLE 3: DC ELECTRICAL CHARACTERISTICS
(0C to 70C, 4.75V to 5.25V)
PARAMETER
Static Supply Current*
High Level Input Voltage
Low Level Input Voltage
High Level Input Current
Low Level Input Current
High Level Output Current
Low Level Output Current
Output Rise & Fall Time
SYMBOL
I
DD
V
IH
V
IL
I
IH
I
IL
I
OH
I
OL
T
R
& T
F
MIN
2.0
0.8
1
1
-4.0
4.0
2
MAX
30
UNITS
mA
V
V
µA
µA
mA
mA
ns
NOTES
V
IH
= V
DD
V
IL
= 0V
V
DD
= 4.75V
V
OH
= 2.4V
V
DD
= 4.75V
V
OL
= 0.4V
C
LD
= 5 pf
*I
DD
(Dynamic) = 5 * C
LD
* V
DD
* F
where: C
LD
= Average capacitance load/tap (pf)
F = Input frequency (GHz)
Input Capacitance = 10 pf typical
Output Load Capacitance (C
LD
) = 25 pf max
Doc #96006
12/2/96
DATA DELAY DEVICES, INC.
3 Mt. Prospect Ave. Clifton, NJ 07013
3
3D7105
SILICON DELAY LINE AUTOMATED TESTING
TEST CONDITIONS
INPUT:
Ambient Temperature:
25
o
C
±
3
o
C
Supply Voltage (Vcc):
5.0V
±
0.1V
Input Pulse:
High = 3.0V
±
0.1V
Low = 0.0V
±
0.1V
Source Impedance:
50Ω Max.
Rise/Fall Time:
3.0 ns Max. (measured
between 0.6V and 2.4V )
Pulse Width:
PW
IN
= 1.25 x Total Delay
Period:
PER
IN
= 2.5 x Total Delay
OUTPUT:
R
load
:
C
load
:
Threshold:
10KΩ
±
10%
5pf
±
10%
1.5V (Rising & Falling)
Device
Under
Test
10KΩ
Digital
Scope
5pf
470Ω
NOTE:
The above conditions are for test only and do not in any way restrict the operation of the device.
COMPUTER
SYSTEM
PRINTER
PULSE
GENERATOR
OUT
TRIG
IN
DEVICE UNDER
TEST (DUT)
OUT1
OUT2
OUT3
OUT4
OUT5
REF
IN
TRIG
DIGITAL SCOPE/
TIME INTERVAL COUNTER
Figure 2: Test Setup
PER
IN
PW
IN
t
RISE
INPUT
SIGNAL
2.4V
1.5V
0.6V
t
FALL
V
IH
2.4V
1.5V
0.6V
V
IL
t
PHL
t
PLH
OUTPUT
SIGNAL
V
OH
1.5V
1.5V
V
OL
Figure 3: Timing Diagram
Doc #96006
12/2/96
DATA DELAY DEVICES, INC.
Tel: 973-773-2299
Fax: 973-773-9672
http://www.datadelay.com
4