To learn more about ON Semiconductor, please visit our website at
www.onsemi.com
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor
product management systems do not have the ability to manage part nomenclature that utilizes an underscore
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated
device numbers. The most current and up-to-date ordering information can be found at
www.onsemi.com.
Please
email any questions regarding the system integration to
Fairchild_questions@onsemi.com.
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
FSFR-XS Series — Fairchild Power Switch (FPS
™
) for Half-Bridge Resonant Converter
February 2013
FSFR-XS Series —
Fairchild Power Switch (FPS™)
for Half-Bridge Resonant Converters
Features
Variable Frequency Control with 50% Duty Cycle
for Half-Bridge Resonant Converter Topology
High Efficiency through Zero Voltage Switching (ZVS)
Internal UniFET™ with Fast-Recovery Body Diode
Fixed Dead Time (350 ns) Optimized for MOSFETs
Up to 300 kHz Operating Frequency
Auto-Restart Operation for All Protections with
External LV
CC
Protection Functions: Over-Voltage Protection
(OVP), Over-Current Protection (OCP), Abnormal
Over-Current Protection (AOCP), Internal Thermal
Shutdown (TSD)
Description
The FSFR-XS series includes highly integrated power
switches designed for high-efficiency half-bridge
resonant converters. Offering everything necessary to
build a reliable and robust resonant converter, the FSFR-
XS series simplifies designs while improving productivity
and performance. The FSFR-XS series combines power
MOSFETs with fast-recovery type body diodes, a high-
side gate-drive circuit, an accurate current controlled
oscillator, frequency limit circuit, soft-start, and built-in
protection functions. The high-side gate-drive circuit has
common-mode noise cancellation capability, which
guarantees stable operation with excellent noise
immunity. The fast-recovery body diode of the MOSFETs
improves reliability against abnormal operation
conditions, while minimizing the effect of reverse
recovery. Using the zero-voltage-switching (ZVS)
technique dramatically reduces the switching losses and
significantly improves efficiency. The ZVS also reduces
the switching noise noticeably, which allows a small-
sized Electromagnetic Interference (EMI) filter.
The FSFR-XS series can be applied to resonant
converter topologies such as series resonant, parallel