PD- 95897
IRGP20B120U-EP
INSULATED GATE BIPOLAR TRANSISTOR
Features
UltraFast Non Punch Through (NPT)
Technology
10
µ
s Short Circuit capability
Square RBSOA
Positive V
CE
(on) Temperature Coefficient
Extended lead TO-247 package
Lead-Free
UltraFast IGBT
C
V
CES
= 1200V
G
E
V
CE(on) typ.
=
3.05V
V
GE
= 15V, I
C
= 20A, 25°C
Benefits
Benchmark efficiency above 20KHz
Optimized for Welding, UPS, and Induction Heating
applications
Rugged with UltraFast performance
Low EMI
Significantly Less Snubber required
Excellent Current sharing in Parallel operation
Longer leads for easier mounting
n-channel
TO-247AD
Absolute Maximum Ratings
Parameter
V
CES
I
C
@ T
C
= 25°C
I
C
@ T
C
= 100°C
I
CM
I
LM
V
GE
E
AS
@ T
C
=25°C
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
(Fig.1)
Continuous Collector Current
(Fig.1)
Pulsed Collector Current
(Fig.3, Fig. CT.5)
Clamped Inductive Load Current
(Fig.4, Fig. CT.2)
Gate-to-Emitter Voltage
Avalanche Energy, single pulse
I
C
= 25A, V
CC
= 50V, R
GE
= 25ohm
L = 200µH
(Fig. CT.6)
Maximum Power Dissipation
(Fig.2)
Maximum Power Dissipation
(Fig.2)
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
Max.
1200
40
20
120
120
± 20
65
Units
V
A
V
mJ
W
P
D
@ T
C
= 25°C
P
D
@ T
C
= 100°C
T
J
T
STG
300
120
-55 to + 150
300, (0.063 in. (1.6mm) from case)
10 lbfin (1.1Nm)
°C
Thermal Resistance
Parameter
R
θJC
R
θCS
R
θJA
Wt
Z
θ
JC
Junction-to-Case - IGBT
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Transient Thermal Impedance Junction-to-Case
Min.
(Fig.18)
Typ.
0.24
6 (0.21)
Max.
0.42
40
Units
°C/W
g (oz)
www.irf.com
1
09/14/04
IRGP20B120U-EP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V
(BR)CES
Collector-to-Emitter Breakdown Voltage
∆V
(BR)CES
/
∆Tj
Temperature Coeff. of Breakdown Voltage
Min.
1200
Typ.
+1.2
3.05
3.37
4.23
3.89
4.31
5.0
- 1.2
15.7
Collector-to-Emitter Saturation
V
CE(on)
Voltage
V
GE(th)
∆V
GE(th)
/
∆Tj
Gate Threshold Voltage
Temperature Coeff. of Threshold Voltage
Forward Transconductance
4.0
13.6
Max. Units
V
V/°C
3.45
3.80
4.85
V
4.50
5.06
6.0
V
S
Conditions
V
GE
= 0V,I
c
=250 µA
V
GE
= 0V, I
c
= 1 mA ( 25 -125 C )
I
C
= 20A, V
GE
= 15V
I
C
= 25A, V
GE
= 15V
I
C
= 40A, V
GE
= 15V
I
C
= 20A, V
GE
= 15V, T
J
= 125°C
I
C
= 25A, V
GE
= 15V, T
J
= 125°C
V
CE
= V
GE
, I
C
= 250 µA
o
o
Fig.
5, 6
7, 8
9
10
8,9,10,11
o
mV/ C
V
CE
= V
GE
, I
C
= 1 mA (25 -125 C)
g
fe
I
CES
I
GES
Zero Gate Voltage Collector Current
Gate-to-Emitter Leakage Current
17.8
250
420 750
1482 2200
±100
V
CE
= 50V, I
C
= 20A, PW=80µs
V
GE
= 0V, V
CE
= 1200V
µA
V
GE
= 0V, V
CE
= 1200V, T
J
=125°C
V
GE
= 0V, V
CE
= 1200V, T
J
=150°C
nA
V
GE
= ±20V
Switching Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
Q
g
Q
ge
Q
gc
E
on
E
off
E
tot
E
on
E
off
E
tot
td(on)
tr
td(off)
tf
C
ies
C
oes
C
res
RBSOA
Total Gate charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Switching Loss *
Turn-Off Switching Loss *
Total Switching Loss *
Turn-on Switching Loss *
Turn-off Switching Loss *
Total Switching Loss *
Turn - on delay time
Rise time
Turn - off delay time
Fall time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
Typ.
169
24
82
850
425
Max. Units
Conditions
I
C
= 20A
254
36
nC
V
CC
= 600V
V
GE
= 15V
126
I
C
= 20A, V
CC
= 600V
1050
650
µJ
V
GE
= 15V, Rg = 5Ω,
L = 200µH
T
J
= 25 C, Energy losses include tail
and diode reverse recovery
o
Fig.
17
CT 1
CT 4
WF1
WF2
12, 14
CT 4
WF 1 & 2
13, 15
CT 4
WF1
WF2
1275 1800
1350 1550
610 875
1960 2425
50
20
204
24
2200
210
85
65
30
230
35
ns
µJ
Ic = 20A, V
CC
= 600V
V
GE
= 15V, Rg = 5Ω,
L = 200µH
T
J
= 125 C, Energy losses include tail
and diode reverse recovery
o
Ic = 20A, V
CC
= 600V
V
GE
= 15V, Rg = 5Ω,
L = 200µH
T
J
= 125 C
V
GE
= 0V
o
pF
V
CC
= 30V
f = 1.0 MHz
T
J
= 150 C, Ic = 120A
V
CC
= 1000V, V
P
= 1200V
Rg = 5Ω, V
GE
= +15V to 0V
T
J
= 150 C
V
CC
= 900V, V
P
= 1200V
Rg = 5Ω, V
GE
= +15V to 0V
o
o
16
4
CT 2
Reverse bias safe operating area
FULL SQUARE
CT 3
WF3
SCSOA
Le
Short Circuit Safe Operating Area
10
----
13
----
µs
Internal Emitter Inductance
nH
Measured 5 mm from the package.
* Used Diode HF40D120ACE
2
www.irf.com
IRGP20B120U-EP
Fig.1 - Maximum DC Collector
Current vs. Case Temperature
50
45
40
Fig.2 - Power Dissipation vs. Case
Temperature
320
280
240
35
P
t o t
( W)
0
40
80
120
160
( A)
30
25
20
15
10
5
0
200
160
120
80
40
0
0
40
80
T
C
(°C)
120
160
I
C
T
C
(°C)
Fig.3 - Forward SOA
T
C
=25°C; Tj < 150°C
1000
PULSED
2µs
Fig.4 - Reverse Bias SOA
Tj = 150°C, V
GE
= 15V
1000
100
10µs
100
100µ s
( A)
10
1ms
C
I
I
10
1
1
1
10ms
DC
0.1
1
10
100
V
CE
(V)
1000
10000
C
( A)
10
100
V
CE
(V)
1000
10000
www.irf.com
3
IRGP20B120U-EP
Fig.5 - Typical IGBT Output
Characteristics
Tj= -40°C; tp=300µs
60
55
50
45
40
( A)
35
30
25
20
15
10
5
0
0
1
2
3
4
V
CE
(V)
5
6
V
GE
= 18V
V
GE
= 15V
V
GE
= 12V
V
GE
= 10V
V
GE
= 8V
Fig.6 - Typical IGBT Output
Characteristics
Tj=25°C; tp=300µs
60
55
50
45
40
V
GE
= 18V
V
GE
= 15V
V
GE
= 12V
V
GE
= 10V
V
GE
= 8V
(A)
C
35
30
25
20
15
10
5
0
0
1
2
3
V
CE
(V)
4
5
6
I
C
Fig.7 - Typical IGBT Output
Characteristics
Tj=125°C; tp=300µs
60
55
50
45
40
V
GE
= 18V
V
GE
= 15V
V
GE
= 12V
V
GE
= 10V
V
GE
= 8V
(A)
35
30
25
20
15
10
5
0
0
1
2
3
4
5
6
I
C
V
CE
(V)
4
I
www.irf.com
IRGP20B120U-EP
Fig.9 - Typical V
CE
vs V
GE
8
Tj= -40°C
20
18
16
14
(V)
( V)
20
18
16
14
12
10
8
6
4
2
0
Fig.10 - Typical V
CE
vs V
GE
9
Tj= 25°C
12
10
8
6
4
2
0
6
8
10
12 14
V
GE
(V)
16
18
20
I
CE
=10A
I
CE
=20A
I
CE
=40A
I
CE
=10A
I
CE
=20A
I
CE
=40A
CE
V
V
CE
6
8
10
12
14
V
GE
(V)
16
18
20
Fig.11 - Typical V
CE
vs V
GE
10
Tj= 125°C
20
18
16
14
( V)
12
(A)
250
225
200
175
150
Fig.12 - Typ. Transfer Characteristics
11
V
CE
=20V; tp=20µ s
Tj=25°C
Tj=125°C
CE
10
8
6
4
2
0
6
8
10
12 14
V
GE
(V)
I
CE
=10A
I
CE
=20A
I
CE
=40A
125
100
75
50
25
0
Tj=125°C
Tj=25°C
V
I
C
16
18
20
0
4
8
12
V
GE
(V)
16
20
www.irf.com
5